. Quantlib, A Free/Open-source Library for Quantitative Finance

L. Andersen and M. Broadie, Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options, Management Science, vol.50, issue.9, pp.1222-1234, 2004.
DOI : 10.1287/mnsc.1040.0258

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, vol.81, issue.3, pp.637-659, 1973.
DOI : 10.1086/260062

M. Broadie and M. Cao, Improved lower and upper bound algorithms for pricing American options by simulation, Quantitative Finance, vol.9, issue.8, pp.845-861, 2008.
DOI : 10.1109/9.793723

J. F. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression, Insurance: Mathematics and Economics, vol.19, issue.1, pp.19-30, 1996.
DOI : 10.1016/S0167-6687(96)00004-2

A. R. Choudhury, A. King, S. Kumar, and Y. Sabharwal, Optimizations in financial engineering: The Least-Squares Monte Carlo method of Longstaff and Schwartz, 2008 IEEE International Symposium on Parallel and Distributed Processing, pp.1-11, 2008.
DOI : 10.1109/IPDPS.2008.4536290

V. Doan, A. Gaikwad, M. Bossy, and F. Baude, Parallel pricing algorithms for multi-dimensional Bermudan/American options using Monte Carlo methods, Mathematics and Computers in Simulation, vol.81, issue.3, pp.568-577, 2010.
DOI : 10.1016/j.matcom.2010.08.005

URL : https://hal.archives-ouvertes.fr/inria-00278514

A. Ibáñez and F. Zapatero, Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier, Journal of Financial and Quantitative Analysis, vol.3, issue.02, pp.253-275, 2004.
DOI : 10.1016/S0165-1889(97)00028-6

F. A. Longstaff and E. S. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach, Review of Financial Studies, vol.14, issue.1, pp.113-147, 2001.
DOI : 10.1093/rfs/14.1.113

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. A. Picazo, American Option Pricing: A Classif cation-Monte Carlo (CMC) Approach. In: Monte Carlo and Quasi-Monte Carlo Methods, Proceedings of a Conference Held at Hong Kong Baptist University, pp.422-433, 2000.
DOI : 10.1007/978-3-642-56046-0_29

J. N. Tsitsiklis and B. V. Roy, Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives, IEEE Transactions on Automatic Control, vol.44, issue.10, pp.1840-1851, 1999.
DOI : 10.1109/9.793723