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Abstract. This paper presents a compact design of a multiplicative inverter for 

elliptic curve cryptosystems. Using a methodology based on the composite field 

arithmetic, we propose a combinatorial solution to mitigate the usage of look up 

tables as commonly adopted by the conventional software based approach. In 

particular, we perform further isomorphism in the subfield, such that the re-

quired arithmetic are constructed using logical AND and XOR gates only. In 

this work, we demonstrate our proposed methodology with the field 

  ((  )  )    ((((  ) ) )  ) in optimal normal type II basis. The chosen 

field is both secure and results in efficient computation. An analysis of the re-

sultant hardware complexity of our inverter is reported towards the end. 

Keywords: Elliptic curve (EC) cryptosystems, composite field arithmetic 

(CFA), Itoh and Tsujii inversion algorithm (ITIA), multiplicative inversion. 

1 Introduction 

Finite fields play an essential role in the modern cryptographic applications. As such, 

the complexity of its underlying field's arithmetic will determine the amount of re-

sources required in the final cryptosystem. Therefore, the first, and the most essential 

step in constructing a compact and efficient elliptic curve (EC) hardware cryptosys-

tem is to choose the suitable field for ECC computation. Therefore, composite field, 

which offers greater computational efficiency compared to other finite fields, is a 

favourable choice. The prior studies in composite field EC cryptosystems had empha-

sized on software implementations where look-up tables (LUTs) were utilized in the 

subfield arithmetic [1-4]. Consequently, the unbreakable delays of LUTs will deter-

mine the maximum attainable clock rate of the final hardware circuitry. This draw-

back can be avoided by employing combinatorial approaches, i.e. using only the com-

binatorial logic for the hardware construction. 
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   In particular, the scalar multiplication,   , is the most crucial and yet the most 

complicated operation in any elliptic curve cryptography (ECC) [5, 6] applications. It 

involves a repetition of point additions and point doublings, which requires inversions 

over the finite field when defined in affine coordinate system [7]. Therefore, in this 

work, we propose a compact and efficient inversion circuit through the exploitation of 

composite field arithmetic (CFA) for EC hardware cryptosystem. Two main criteria 

are taken into consideration during the construction, which are the security aspect and 

the complexity of the underlying arithmetic. In short, we need to select an optimal 

field that is insusceptible to the known attacks and also results in combinatorial inver-

sion circuitry without the need of LUTs.   

2 Composite Field Inversion for Elliptic Curve Cryptography 

Construction of the composite field inverter in EC cryptosystem requires three major 

steps. The first and also the most important step is choosing an appropriate field that 

would circumvent the cryptographic attacks on the elliptic curve discrete logarithm 

problem (ECDLP) [8-9]. ECDLP is defined as follows. Given an elliptic curve  , 

defined over a finite field   ( ), a point    (  ( )) of order  , and a second 

point   〈 〉, determine the integer   [     ] such that     . The ECDLP is 

of particular interest because its apparent intractability would form the basis for the 

security of EC cryptographic schemes [10]. 

In 2000, Gaudry, Hess and Smart (GHS) [11] showed that the Weil descent attack 

methodology (see [12]), can be used to reduce any instance of the ECDLP to an in-

stance of discrete logarithm problem (DLP) in the Jacobian of a hyperelliptic curve 

over    (  ). Only for the case where   [       ]  is prime,    (  )  is secure 

from the GHS attack [13]. In other words, the use of elliptic curves over   (  ) with 

  is a composite number is not recommended. 

In the later date, the applicability of the GHS attack on the ECDLP for elliptic 

curves over   (  ) for composite   [       ]  was further analyzed by Maurer et 

al. in [10]. The elliptic curves of composite field   ((  ) ) that are susceptible to 

the GHS attack were identified and listed precisely in their paper. Therefore, this al-

lows us to select the composite field that is not weak under GHS attack. 

For security purposes, the extension field,  , has to be a considerably large prime 

number, while the subfields,  , is chosen to be relatively smaller in order to simplify 

the computation. Hence, we have chosen   ((  )  ) for our design. 

In the second step, after the field selection, we consider algorithmic optimization to 

achieve area reduction in the inverter design. While the previous studies focused on 

two-level isomorphism composite field, we propose to perform further isomorphisms 

in the subfield   (  ), such that it is further reduced to   (((  ) ) ).  With this, we 

can derive a combinatorial inverter circuitry without the use of LUTs. Furthermore, 

normal basis representation is often a preferred choice over the polynomial basis rep-

resentation in hardware implementation. Among the normal bases, the optimal normal 

basis (ONB) manages to further reduce the complexity of the complicated normal 



basis multipliers. As we have decided the extension field,  , to be a prime number, 

ONB type II representation is sought here. 

Last, we employ the Itoh and Tsujii inversion (ITI) algorithm [14, 15] to perform 

the efficient and compact multiplicative inversion over the selected composite field. 

The ITI algorithm presented below as Theorem 1 is a Fermat's Little Theorem (FLT)-

based inversion algorithm which can efficiently reduce the inversion in the extension 

field    ((  ) ) to the inversion in its subfield,   (  ). 
 

Theorem 1 (Itoh & Tsujii Inversion [14]).          ((  ) )           
(    )

(   )
                                                    (  )        

         (  )   

Overall, in this work, we derive a combinatorial inverter over   ((((  ) ) )  ) 
for EC cryptosystems in ONBII representation using the ITI algorithm. Detailed de-

scription of our proposed inverter will be presented in the next section. To the best of 

our knowledge, this is the first reported work on using ITI for the aforementioned 

configuration. 

3 Design and Implementation 

Our composite field inverter using ITI algorithm can be accomplished through the 

following four steps. Here after, we denote our field as   (  )  with   
(((  ) ) )  and     .  

Step 1: Exponentiation of        (  ). The exponent     can be expressed 

as a sum of powers                           . Through a series of repeated 

power raising and multiplication, the exponentiation is accomplished as follows;  
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The complexity to compute      using addition chain (see (1)) is found to be   

multiplications in   (   ) and    exponentiations to the      power. While the ex-

ponentiation requires only   cyclic shifts, the   (   ) multiplier needs to be imple-

mented using a normal basis multiplier. 



Step 2: Multiplication of   and      that yield       ( ). In the second step, 

multiplication of two operands           (   ) will result in       (  ). Sub-

sequently, we need a specific multiplier that compute the first coefficient in the gen-

eral multiplication in  (   ) . This step can be accomplished with    multiplications 

and    additions over   (  ). Note that in the finite field of characteristic  , both 

subtraction and addition are implemented using a XOR operation. 

 Step 3: Inversion in   (  ) yields (  )  . Instead of using LUTs, we utilize a 

combinatorial circuitry to perform the inversion over the composite 

field   (((  ) ) ). The inversion involves three level of isomorphisms which re-

quires three field polynomials stated (in a general form) below: 

 

 ( )                              (  )   (  )   (2)  
 ( )                                (  )   (  ) (3) 
 ( )                               (  )   ( ) (4) 

 

The inverter architecture is described with reference to their respective field poly-

nomials in general. First, for the isomorphism between   (  )   (  ), we have the 

element of field   (  ),  , expressed as    
      , where             ( 

 ) and 

using both roots of  ( )  as  ( )    (     )(       )  Second, for the isomor-

phism between   (  )   (  ), we have the element of field   (  ),  , expressed 

as    
     , where             ( 

 ) and  ( )    (     )(      )  Last, for the 

isomorphism between   (  )   ( )  we let element of field   (  ),  , expressed 

as    
     , where          ( ) and  ( )    (     )(      )  

Hence, the multiplicative inverse of    
       can be computed as stated in (5), 
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where    [     (  
    

 ) ]  . The arithmetic in (5) can be decomposed into 

several subfield operations, namely the multiplications and the inversions. To summa-

rize, the arithmetic required over the inversion is tabulated in Table 1 and as depicted 

in Figure 1. The total complexity of our inverter is    ANDs and    XORs. 

Step 4: Multiplication of  (  )        . In this final step, we need to multiply 

        (  )  (from Step 1) and (  )      ( )  (from Step 3) to de-

duce    .This step requires        multiplications in    ( ) . Let 

        (((  ) ) ) be {   
     }  and {   

     }  respectively. Multiplication 

of   and   is then derived in (6), 
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with a complexity of    ANDs and    XORs. 



Table 1. Multiplicative Inverse for   (((  ) ) ) 

Operation Equation 
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Fig. 1. Inversion over   (  ) using CFA. (a) Inversion in   (  ), (b) Inversion in   (  ), (c) 

Inversion in   (  ), (d) Multiplication in   (  ), (e) Multiplication in   (  ) 

 

 

g0

g1

d0

d1

(c)

Г
-1

ГT
2

Г0

Г1 Δ1

Δ0X+

XX

+

(b)

2

2

1

1

Г
2

g0

g1
f1+

X

+
d0

d1

X

X

+

+ f0

(e)

1

1

Г0

Г1

T
2
Г

δ
1

δ
0

+

X

+
Δ0

Δ1

X

X

+

+

(d)

2

2

TГ

TГ

γ0

γ1 νγ
2

γ
-1

δ
1

δ
0X

X

X

+

4

4

+

(a)



4 Discussion and Results 

To demonstrate the efficacies of our inverter in EC hardware cryptosystem, its com-

putational cost is benchmarked with the previous works. To our best knowledge, the 

most recent and comparable work from the literature was presented by Guajardo and 

Paar in 1997 [4]. They employed ITI algorithm for inversion over two levels compo-

site field of   ((  ) ) in polynomial basis representation, and the subfield   (  ) 
arithmetic was computed using the LUT approach.  

The LUT approach employed in the previous works of the composite field EC 

cryptosystems [1-4] was performed using     and         conversion. In this ap-

proach, three and two tables of       bits were used to calculate the multiplication 

and the inversion of the field elements respectively. Meanwhile, without using any 

LUT, our   (((  ) ) ) inverter and multiplier are constructed using    ANDs and 

   XORs, and    ANDs and    XORs respectively.  

Due to the large amount of subfield multiplier are required, the complexity of the 

subfield multiplier determines the hardware cost (area and power) and the perfor-

mance of the inverter architecture. Here, we point out the advantages of using combi-

natorial   (((  ) ) ) multiplier as opposed to the LUT approach in hardware im-

plementation. Having both architectures implemented in Cyclone III EP3C120F780I7 

FPGA, the summary of the hardware requirements are tabulated in Table 2. Based on 

the result in Table 2 our combinatorial circuitry is capable of promoting a significant 

saving in term of hardware resources and with higher overall performance compared 

to the conventional LUT approach, which is based on     and         conversion 

method.    

Table 2. Hardware analysis of FPGA implementation for   (((  ) ) )  multiplier using (i) 

combinatorial circuity as proposed in our work and (ii) log and antilog conversions. 

 (i) Combinatorial 

Circuity 

(ii) Log and Antilog 

Conversions 

Total LE 51 432 

Total Combinatorial Functions 51 432 

Dedicated Logic Register 0 0 

Total Register 8 0 

Total Memory Bits 0 2,048 

Fmax (MHz) 142.76 95.15 

Total Thermal Power Dissipation (mW) 79.83 80.61 

Core Dynamic Thermal Power Dissipation (mW) 2.90 3.65 

Core Static Power Dissipation (mW) 68.26 68.27 

I/O Thermal Power Dissipation (mW) 8.67 8.70 

 

Furthermore, we also include the existing EEA-based inverter architectures over 

binary field,   (  )  [16-18] for benchmarking. The complexity of these 

architectures working in   (    ), together with the work by Guajardo and Paar in 



  ((  )  ) and our work are summarized in Table 3. The analytical results in Table 

3  proved that composite field results in compact architecture design compared to the 

binary field. Therefore, composite field that is insusceptible towards cryptographic 

attacks is highly desirable in hardware EC cryptosystem implementation. 

Table 3. Analytical comparison of various inverter architectures. 

 Guajardo and Paar 

[14] 

Guo and 

Wang [16] 

Wu at al. 

[17] 

Yan and Sarwate 

[18] 

Our Work 

Finite Field   ((  )  )   (    )   (    )   (    )   ((((  ) ) )  ) 

OR gates 0 0 1,312 0 0 

NOT gates 0 0 656 0 0 

AND gates 0 645,504 654,504 430,336 275,652 

XOR gates 315,688 430,336 215,168 430,336 986,340 

XOR3 gates 0 215,168 215,168 0 0 

Adder 7,812 656 0 0 0 

Mux 0 860,672 654,504 645,504 0 

LUT 

 (2048 bits) 

8,279 0 0 0 0 

5 Conclusion 

This work presented of a secure and compact combinatorial inverter for EC 

cryptosystems over   ((((  ) ) )  ) in ONBII representation. Unlike the previous 

works, we performed further isomorphisms in the subfield,   (  )    (((  ) ) ), 
such that the need for LUTs can be eliminated completely. Using the ONBII 

representation, we chose the extension field  , to be a prime number while allowing 

the    exponentiations be implemented easily using  simple cyclic shifts. In addition 

to that, we have shown the advantages of using combinatorial circuitry for EC 

hardware cryptosystem  as opposed  to the LUT approach. Furthermore, we has 

proven our composite field inverter is more compact than those binary field inverters 

which were reported in the literature. 
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