Tuning of a Knowledge-Driven Harmonization Model for Tonal Music

Abstract : The paper presents and discusses direct and indirect tuning of a knowledge-driven harmonization model for tonal music. Automatic harmonization is a data analysis problem: an algorithm processes a music notation document and generates specific meta-data (harmonic functions). The proposed model could be seen as an Expert System with manually selected weights, based largely on the music theory. It emphasizes universality - a possibility of obtaining varied but controllable harmonies. It is directly tunable by changing the internal parameters of harmonization mechanisms, as well as an importance weight corresponding to each mechanism. The authors propose also indirect model tuning, using supervised learning with a preselected set of examples. Indirect tuning algorithms are evaluated experimentally and discussed. The proposed harmonization model is prone both to direct (expert-based) and indirect (data-driven) modifications, what allows for a mixed learning and relatively easy interpretation of internal knowledge.
Type de document :
Communication dans un congrès
Agostino Cortesi; Nabendu Chaki; Khalid Saeed; Sławomir Wierzchoń. 11th International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2012, Venice, Italy. Springer, Lecture Notes in Computer Science, LNCS-7564, pp.326-337, 2012, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-33260-9_28〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01551720
Contributeur : Hal Ifip <>
Soumis le : vendredi 30 juin 2017 - 14:43:13
Dernière modification le : samedi 1 juillet 2017 - 01:06:46
Document(s) archivé(s) le : lundi 22 janvier 2018 - 20:36:46

Fichier

978-3-642-33260-9_28_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Mariusz Rybnik, Wladyslaw Homenda. Tuning of a Knowledge-Driven Harmonization Model for Tonal Music. Agostino Cortesi; Nabendu Chaki; Khalid Saeed; Sławomir Wierzchoń. 11th International Conference on Computer Information Systems and Industrial Management (CISIM), Sep 2012, Venice, Italy. Springer, Lecture Notes in Computer Science, LNCS-7564, pp.326-337, 2012, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-33260-9_28〉. 〈hal-01551720〉

Partager

Métriques

Consultations de la notice

164

Téléchargements de fichiers

34