C. C. Aggarwal, A. Hinneburgand, and D. A. Keim, On the Surprising Behavior of Distance Metrics in High Dimensional Space, LNCS, vol.1973, pp.420-434, 2001.
DOI : 10.1007/3-540-44503-X_27

J. Balthrop, F. Esponda, S. Forrest, and M. Glickman, Coverage and generalization in an artificial immune system, Proc. of the Genetic and Evolutionary Computation Conference, pp.9-13, 2002.

L. De-castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, 2002.
DOI : 10.1007/978-3-540-73922-7

A. Chmielewski and S. T. Wierzcho´nwierzcho´n, On the distance norms for multidimensional dataset in the case of real-valued negative selection application. Zeszyty Naukowe Politechniki Biaa lostockiej, pp.39-50, 2007.

D. Dasgupta and S. Forrest, Novelty detection in time series data using ideas from immunology. Fifth International Conf. on Intelligent Systems, 1996.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, A sense of self for Unix processes, Proceedings 1996 IEEE Symposium on Security and Privacy, pp.120-128, 1996.
DOI : 10.1109/SECPRI.1996.502675

S. Forrest, A. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, pp.202-212, 1994.
DOI : 10.1109/RISP.1994.296580

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. K. Harmer, P. D. Wiliams, G. H. Gunsch, and G. B. Lamont, An artificial immune system architecture for computer security applications, IEEE Transactions on Evolutionary Computation, vol.6, issue.3, pp.252-280, 2002.
DOI : 10.1109/TEVC.2002.1011540

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Hofmeyr and S. Forrest, Architecture for an Artificial Immune System, Evolutionary Computation, vol.125, issue.4, pp.443-473, 2000.
DOI : 10.1109/2.755003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Z. Ji and D. Dasgupta, Real-valued negative selection algorithm with variable-sized detectors. Genetic and Evolutionary Computation GECCO-2004, Part I, LNCS, vol.3102, pp.287-298, 2004.
DOI : 10.1007/978-3-540-24854-5_30

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Z. Ji and D. Dasgupta, Revisiting Negative Selection Algorithms, Evolutionary Computation, vol.1, issue.3, pp.223-251, 2007.
DOI : 10.1109/TEVC.2002.1011540

URL : http://ais.cs.memphis.edu/files/papers/Revisiting.pdf

K. Sayood, Introduction to Data Compression, 2005.

J. Stepaniuk, Rough set data mining of diabetes data, Foundations of Intelligent Systems, pp.457-465, 1999.
DOI : 10.1007/BFb0095133

T. Stibor, Phase transition and the computational complexity of generating rcontiguous detectors, Proc. of 6th International Conference on Artificial Immune Systems, pp.142-155, 2007.

M. Tabedzki, M. Rybnik, and K. Saaeed, Method for handwritten word recognition without segmentation, Polish J. of Environmental Studies, vol.17, pp.47-52, 2008.

J. Timmis, A. Hone, T. Stibor, and E. Clark, Theoretical advances in artificial immune systems, Theoretical Computer Science, vol.403, issue.1, pp.11-32, 2008.
DOI : 10.1016/j.tcs.2008.02.011

URL : http://doi.org/10.1016/j.tcs.2008.02.011

S. T. Wierzcho´nwierzcho´n, Generating optimal repertoire of antibody strings in an artificial immune system, Intelligent Information Systems. Proc. of the IIS'2000 Symposium, pp.119-133, 2000.

S. T. Wierzcho´nwierzcho´n, Deriving concise description of non-self patterns in an artificial immune system, New Learning Paradigm in Soft Comptuning. Physica-Verlag, pp.438-458, 2001.