A. Cichocki, R. Zdunek, and S. Amari, Nonnegative Matrix and Tensor Factorization, IEEE Signal Processing Magazine, vol.25, issue.1, pp.142-145, 2008.
DOI : 10.1002/9780470747278

B. Cyganek and J. P. Siebert, An Introduction to 3D Computer Vision Techniques and Algorithms, 2009.
DOI : 10.1002/9780470699720

B. Cyganek, An Analysis of the Road Signs Classification Based on the Higher-Order Singular Value Decomposition of the Deformable Pattern Tensors, Advanced Concepts for Intelligent Vision Systems Acivs, LNCS, vol.6475, pp.191-202, 2010.

B. Cyganek, Ensemble of Tensor Classifiers Based on the Higher-Order Singular Value Decomposition, Part II, pp.578-589, 2012.
DOI : 10.1007/978-3-642-28931-6_55

K. Fukunaga, Introduction to Statistical Pattern Recognition, 1990.

Y. Grandvalet, Bagging Equalizes Influence, Machine Learning, vol.55, issue.3, pp.251-270, 2004.
DOI : 10.1023/B:MACH.0000027783.34431.42

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6885

J. Hull, A database for handwritten text recognition research, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, issue.5, pp.550-554, 1994.
DOI : 10.1109/34.291440

K. Jackowski and M. Wo?niak, Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas, Pattern Analysis and Applications, vol.34, issue.4, pp.415-425, 2009.
DOI : 10.1007/s10044-006-0041-y

J. Kittler, M. Hatef, R. P. Duing, and J. Matas, On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, pp.226-239, 1998.
DOI : 10.1109/34.667881

L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, IEEE Transactions on Neural Networks, vol.18, issue.3, 2005.
DOI : 10.1109/TNN.2007.897478

D. L. Lathauwer, Signal Processing Based on Multilinear Algebra, 1997.

D. L. Lathauwer, B. Moor-de, and J. Vandewalle, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000.
DOI : 10.1137/S0895479896305696

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE on Speech & Image Processing, pp.2278-2324, 1998.
DOI : 10.1109/5.726791

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.1115

R. Polikar, Ensemble Based Systems in Decision Making. IEEE Circuits and Systems Magazine, pp.21-45, 2006.

B. Savas and L. Eldén, Handwritten digit classification using higher order singular value decomposition, Pattern Recognition, vol.40, issue.3, pp.993-1003, 2007.
DOI : 10.1016/j.patcog.2006.08.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.575

B. Sun and J. Feng, A Fast Algorithm for Image Euclidean Distance, 2008 Chinese Conference on Pattern Recognition, pp.1-5, 2008.
DOI : 10.1109/CCPR.2008.32

R. Szeliski, Computer Vision. Algorithms and Applications, 2011.

M. Turk and A. Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, vol.10, issue.9, pp.71-86, 1991.
DOI : 10.1007/BF00239352

M. A. Vasilescu and D. Terzopoulos, Multilinear Analysis of Image Ensembles: TensorFaces, European Conference on Computer Vision, Denmark, pp.447-460, 2002.
DOI : 10.1007/3-540-47969-4_30

L. Wang, Y. Zhang, and J. Feng, On the Euclidean distance of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.8, pp.1334-1339, 2005.
DOI : 10.1109/TPAMI.2005.165