R. A. Poldrack, J. A. Mumford, and T. E. Nichols, Handbook of functional MRI data analysis, 2011.
DOI : 10.1017/CBO9780511895029

B. F. Thirion3-]-a, S. Sol, G. Chung-ngan, X. Sapiro, A. Hu et al., Functional neuroimaging group studies Anisotropic 2d and 3d averaging of fmri signals, IEEE Trans. on Medical Imaging, vol.20, pp.86-93, 2001.

B. Da-mota, V. Fritsch, G. Varoquaux, T. Banaschewski, G. J. Barker et al., Randomized parcellation based inference, NeuroImage, vol.89, pp.203-215, 2014.
DOI : 10.1016/j.neuroimage.2013.11.012

URL : https://hal.archives-ouvertes.fr/hal-00915243

J. H. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, vol.58, issue.301, p.236, 1963.
DOI : 10.1007/BF02289263

T. M. Loughin, A systematic comparison of methods for combining p-values from independent tests, Computational Statistics & Data Analysis, vol.47, issue.3, pp.467-485, 2004.
DOI : 10.1016/j.csda.2003.11.020

N. Meinshausen, L. Meier, and P. Bühlmann, -Values for High-Dimensional Regression, Journal of the American Statistical Association, vol.104, issue.488, pp.1671-1681, 2009.
DOI : 10.1198/jasa.2009.tm08647

URL : https://hal.archives-ouvertes.fr/hal-00477596

A. Hoyos-idrobo, G. Varoquaux, J. Kahn, and B. Thirion, Recursive nearest agglomeration (ReNA): fast clustering for approximation of structured signals, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01366651

M. A. Van-de-wiel, J. Berkhof, and W. N. Van-wieringen, Testing the prediction error difference between 2 predictors, Biostatistics, vol.10, issue.3, pp.550-560, 2009.
DOI : 10.1093/biostatistics/kxp011

S. M. Smith and T. E. Nichols, Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference, NeuroImage, vol.44, issue.1, pp.83-98, 2009.
DOI : 10.1016/j.neuroimage.2008.03.061

A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Muller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, 2014.
DOI : 10.3389/fninf.2014.00014

URL : https://hal.archives-ouvertes.fr/hal-01093971

S. M. Smith, M. W. Jenkinson, C. F. Woolrich, T. E. Beckmann, H. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, NeuroImage, vol.23, pp.208-219, 2004.
DOI : 10.1016/j.neuroimage.2004.07.051

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. P. Orfanos, V. Michel, Y. Schwartz, P. Pinel, A. Moreno et al., The brainomics/localizer database, NeuroImage, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01213448

D. V. Essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens et al., The Human Connectome Project: A data acquisition perspective, NeuroImage, vol.62, issue.4, pp.2222-2231, 2012.
DOI : 10.1016/j.neuroimage.2012.02.018

D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Petersen, B. L. Schlaggar et al., Function in the human connectome: Task-fMRI and individual differences in behavior, NeuroImage, vol.80, 2013.
DOI : 10.1016/j.neuroimage.2013.05.033

M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson, B. Fischl et al., The minimal preprocessing pipelines for the Human Connectome Project, NeuroImage, vol.80, 2013.
DOI : 10.1016/j.neuroimage.2013.04.127