
HAL Id: hal-01555542
https://inria.hal.science/hal-01555542

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

m.Site: Efficient Content Adaptation for Mobile Devices
Aaron Koehl, Haining Wang

To cite this version:
Aaron Koehl, Haining Wang. m.Site: Efficient Content Adaptation for Mobile Devices. 13th In-
ternational Middleware Conference (MIDDLEWARE), Dec 2012, Montreal, QC, Canada. pp.41-60,
�10.1007/978-3-642-35170-9_3�. �hal-01555542�

https://inria.hal.science/hal-01555542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


m.Site: Efficient Content
Adaptation for Mobile Devices

Aaron Koehl and Haining Wang

Department of Computer Science
College of William and Mary

Williamsburg, VA, USA

Abstract. Building a mobile user interface can be a time consuming
process for web site administrators. We present a novel approach for
adapting existing websites to the mobile paradigm. In contrast to ex-
isting technologies, our approach aims to provide a trio of functionality,
ease of use, and scalability for large web communities. A site administra-
tor visually selects objects within a web page, and assigns one or more
attributes to page objects from a rich collection of pre-defined page mod-
ifications. Our proposed system then generates code for a multi-session,
php-based proxy server to provide dynamic mobile content adaptations
based on the attributes selected. The modifications encapsulate com-
plex page interactions and provide a simplified interface to mobile users.
The proxy server is augmented with a highly efficient and standards-
compliant browser residing on the server to interpose on behalf of a
resource-constrained mobile client. Adaptations such as pre-rendering of
content can be cached and shared across users to amortize load. We
build a prototype and evaluate its efficacy on a complex web application
driving a busy online community with nearly 66,000 members.

Keywords: mobile content adaptation, web application proxy

1 Introduction

Web site administrators and content providers continually aim to accommodate
an ever-increasing user base, yet doing so requires supporting a diverse set of
browsing platforms. As a consequence, site administrators are forced to bal-
ance site accessibility and dependability against the costs of supporting multiple
platforms. For instance, due to varying DOM (document object model) imple-
mentations within popular web browsers, object accesses in JavaScript are often
written in such a way that if one function fails because of browser incompatibil-
ity, another function must be written to take over, with the idea that eventu-
ally a compatible function will be invoked. Such support issues are not limited
to scripting. Differences in supported image formats, support for transparency,
variation in supported fonts, subtle discrepancies in CSS rendering, incompati-
bilities caused by user-installed plugins, availability of media extensions such as
Flash and SilverLight, and browser quirks modes [6] between versions must all



2 m.Site: Efficient Content Adaptation for Mobile Devices

be taken into consideration to guarantee support for a large audience. Although
there are productivity tools that help in this regard, correctly supporting a di-
verse set of clients is still a time consuming process. Ultimately, it is the content
administrators and site owners who suffer revenue loss when a user’s browsing
experience is compromised.

Support for mobile browsing introduces considerable complexity to the equa-
tion, as mobile browsers are limited in their capabilities, and even the extents
of those limitations vary greatly between devices. In addition to diverse client
software environments, the device’s screen size, network bandwidth, and com-
putational ability can compromise the user’s browsing experience if disregarded
by the site’s administrator. Whereas great strides have been made in providing
capable mobile architectures, there is a considerable gap between mobile brows-
ing and the richness provided on even low-end desktop platforms. Supporting
higher computational power is at odds with the small form factor, heat out-
put, and battery life expected of today’s smart phones, such as the BlackBerry,
iPhone, and Android.

Currently, site administrators of large and dynamic template-based websites
such as online communities often do not have the time, skill, or capability to
deploy specialized templates for mobile users, although these websites must con-
sider the demands and needs of the growing mobile market. To tackle the prob-
lem faced by site administrators, we propose a cross-cutting approach to content
adaptation for mobile browsing. Content adaptation (screen scraping) is an ef-
fective way to alter the presentation for resource constrained clients, without
involving changes to logic at the database or scripting layer. It is important to
emphasize that (1) content adaptation employs a multitude of techniques, and
(2) content adaptation techniques do not portend a single correct method, in-
stead we recognize a design space in which content adaptation systems make
various tradeoffs.

We therefore develop m.Site, a productivity framework that enables site
administrators to dynamically adapt content for the mobile web with minimal
effort, yet still allows for advanced, programmed customizations. m.Site does
not rely on special browsers or remote third party services, is uninvasive with
respect to code modification, preserves the platform-independence of the web
by not requiring device-specific API’s, and provides the site administrator with
an efficient and cost-effective way to customize very complicated dynamic web
sites.

Our design goal is to make the use of m.Site as simple as possible. We accom-
plish this by introducing an attribute paradigm, where page objects are identified
in a visual tool, and attributes are selected and applied from a menu. These at-
tributes embody well-known techniques such as image fidelity transformation,
to complex subpage interactions. The visual tool generates php shell code for a
server-side proxy, which is responsible for downloading page content, applying
page transformations and attributes, managing cookie jars and multiple users,
and marshaling interactions between the mobile client and the originating web
page. Figure 1 shows the architecture of m.Site at-a-glance. Available to the



m.Site: Efficient Content Adaptation for Mobile Devices 3

Fig. 1. High-level overview of the m.Site architecture.

server side proxy is an arsenal of web scraping and DOM-manipulation tools, as
well as an embedded WebKit [5] browser, which can be used as one of several pre-
rendering engines or to execute code. By simplifying the interface and reducing
or eliminating the need to write transformation code, we expect administrators
will more readily adapt existing web sites for the mobile web.

Our work is motivated by scalability issues found with previous research in
this area. The Highlight [21] system employs a remote control metaphor, in which
server-side web browser instances are used to maintain state for each client. The
resource consumption makes this approach infeasible for large web communities
with thousands of concurrent users.

While providing similar high-level features, we instead generate code for a
lightweight proxy that can handle the majority of the content adaptation: page
slicing, state management, and DOM manipulation, calling on the web browser
only when needed as a graphical rendering engine, or for browser-specific func-
tionality. In this way, we also expose the opportunity for the proxy to cache and
amortize rendering costs and general content adaptations across multiple users.
Cookie security, session management, manipulation via jQuery, and AJAX re-
quests can all be satisifed independently of a heavyweight browser, providing
much of the browser’s functionality without the associated scalability issues.

We build a prototype of our system and evaluate its efficacy on a complex
web application driving a busy online community with nearly 66,000 members.
Summarily, this paper makes the following contributions:

– A code generator that produces a low-overhead, multi-session proxy server to
support adapted pages. This proxy server manages sessions, keeping brows-
ing sessions open in a stateful manner, without the overhead of a browser
running on the server for each user [21];



4 m.Site: Efficient Content Adaptation for Mobile Devices

– A php-based proxy capable of using a highly efficient and standards-compliant
browser running on the server in a disconnected state;

– Server-side caching to amortize rendering costs across many client sessions;
– A visual admin interface that uses a simple attribute paradigm to provide

site administrators with the ability to perform many complex modifications
for both visible and hidden document objects;

– A pluggable content adaptation system that can be extended with multiple
rendering engines to produce HTML, static images, PDF, plain text, or Flash
content at any point in the rendering process;

– Support for producing thumbnail snapshots of rich media content for resource-
constrained devices.

The remainder of this paper is structured as follows. Section 2 surveys related
work and existing techniques for adapting mobile content. Section 3 describes
the m.Site framework as well as the benefits provided by the attribute system.
Section 4 evaluates the efficacy of the framework on a live site, and finally Section
5 concludes.

2 Related Work

m.Site is a productivity framework aimed at allowing site content adaptation
post-hoc, for mobile devices. Architecturally, systems that allow content adap-
tation exist either on the client or as a middleware proxy on the server.

Both client and proxy solutions for content adaptation have been proposed
over the years, influenced by varying needs of the user and site administrator, as
well as evolving technology in resource-constrained devices. Fudzee and Abawajy
[17] provide a high level classification for content adaptation systems, and further
argue for their viability as an attractive solution. m.Site is a dynamic, proxy-
based content adaptation system colocated on the web server, as our motivation
is on the site administrator’s need to support as diverse and broad of a user base
as possible.

Remote display protocols (e.g. thin clients) are not new [23]. However, sev-
eral systems have been proposed specifically for mobile devices [16, 14], which
offload computation from a mobile device to a more capable server, while send-
ing graphical updates and metadata to the device. While thin clients are a rel-
evant technology, they require the installation of client-side software to manage
the interaction. Also similar are specialized accelerated mobile browsers such
as Opera [9] and Skyfire [10]. m.Site ascribes to the offloading approach, but
proposes lightweight graphical updates to be disseminated using an ordinary,
default mobile browser.

Client-side browser plugins [1, 3] can provide the user with many tools to
customize a site’s layout. A plugin injects Javascript into the downloaded page
and manipulates the layout using DOM functions. These systems have trouble
with dynamic page changes, as they often use static XPaths and basic heuristics
to locate objects on the page. However, there has been research into making



m.Site: Efficient Content Adaptation for Mobile Devices 5

client content adaptation systems more robust [12], allowing customizations to
be reused in spite of content changes. Still, Javascript is limited to modifying
objects in the DOM tree. m.Site allows for more sophisticated content adaptation
techniques in addition to Javascript manipulation.

Systems such as [18, 19] allow content adaptations to persist based on the
inputs of a corpus of users. Sharing of scripts within GreaseMonkey communities
[2] provides a static analog to this. Unfortunately, client side software solutions
all suffer from the same problem when aiming to serve a large user base. Users
are reluctant to install or use new browsers and plugins other than the default,
and thus site administrators cannot rely upon these techniques for layout and
content adaptation, especially of mobile visitors.

Proxy based systems allow more sophisticated content adaptation techniques,
extending even to rich multimedia types [26]. FlashProxy [20] allows Flash con-
tent to execute remotely on the server yet be displayed on a mobile device.
Employing a binary rewriting technique to interpose on behalf of the browser,
events trapped on the proxy are sent to the client’s browser via a Javascript RPC
system, maintaining interactivity. m.Site addresses rich media concerns by allow-
ing snapshots of rich media content to be generated, but leaves the interactivity
of Flash, movies, and Silverlight to their respective plugin developers.

A number of proxy-based content adaptation systems have been proposed,
which aid in navigating pages on mobile devices [21, 25]. Bickmore and Schilit
devise a system [11] to analyze and modify a web page based on heuristics and
rules, for instance to adapt all images to a lower fidelity.

Automated techniques for page adaptation are promising but not always
widely applicable [24]. Chen et al. propose a system to automatically analyze
and split a page into subpages to reduce horizontal scrolling [13]. Xiao et al.
extend this approach to allow a page to be split into a hierarchical structure
[25]. Tools such as Apple’s DashCode [4] can be used to simultaneously author
a mobile and web application, avoiding a dual-maintenance scenario, but sites
must be rewritten to use such a tool. Automated techniques provide a good
starting point for adapting page content, and could be used in conjunction with
a framework such as m.Site.

A hybrid approach for enhancing mobile navigation is to use a proxy to
generate thumbnail overviews of site content. Annotated thumbnails and page
splitting enhance navigation by reducing the input effort of browsing a site [25].
m.Site allows the creation of annotated thumbnails as well as multiple levels of
page splitting. Note that a page of low-fidelity thumbnail links can load an order
of magnitude faster than rendering complicated site content on a mobile device,
by reducing both bandwidth and computational effort.

The Highlight system [21] employs a modified Firefox browser located on a
proxy server. A user interacts with modified content sent to the mobile browser,
which in turn remotely controls the browser session maintained on the server.
While this keeps sessions separate and allows for dynamic content, it does not
scale well. In contrast, the m.Site framework uses Apple’s WebKit [5] library
for server side rendering, but only when absolutely necessary. Most of the DOM



6 m.Site: Efficient Content Adaptation for Mobile Devices

Fig. 2. m.Site organization

manipulation and content adaptation can occur outside of the context of the web
browser, while keeping the ability for the proxy to maintain state and sessions
for multiple users, and exposing additional cross-session optimizations such as
caching of pre-rendered objects.

3 System Architecture

m.Site consists of two major components: a visual tool that the site adminis-
trator uses to reshape the site content, and a proxy server that dynamically
applies attributes and generates the reauthored pages. Figure 1 provides a high-
level overview of the m.Site architecture, while Figure 2 presents how m.Site is
organized on the server.

3.1 Site Administrator Tools

In order to be as productive as possible, we develop a visual tool for providing
site administrators a live view of the site. Once a page is loaded, the administra-
tor is able to highlight page objects using a point and click approach, to select
DOM objects on the page. A separate dock exists for non-visual objects, such as
CSS, Javascript functions, head-section content, doctype tags, and cookies. The
selected objects can be subsequently assigned any number of special attributes
that ultimately affect their display on the client. Once a page is downloaded, the
proxy system dynamically identifies these objects, applies any defined adapta-
tions, applies any default rules for unidentified objects, generates the appropriate
subpages and content, and redirects the user to a newly generated entry page.

It is possible that graphical objects split from the main page cannot be ren-
dered without JavaScript and associated CSS, that is, objects may have intra-
page dependencies. These dependencies can be identified in the visual tool. If



m.Site: Efficient Content Adaptation for Mobile Devices 7

Fig. 3. Role of the Rendering Proxy

a dependent object is to be rendered on the client, the appropriate CSS and
JavaScript dependencies can be satisfied by assigning an attribute, which pro-
vides the object to the browser.

The typical work flow to mobilize a site is to load a site’s page into the tool,
visually select relevant objects, and choose attributes to apply (if any). A more
advanced work flow delivers more control, and may include matching objects
and content with regular expressions, image fidelity manipulation, defining of
cacheable objects, and more sophisticated adaptation techniques, such as pre-
rendering CSS on the server but rendering text on the client. As with most
authoring tools, such techniques will be heavily dependent on the site being
adapted.

3.2 Proxy Server

Upon completion, the visual tool generates a php file from shell template code.
This shell code becomes a proxy for the originating page, and handles user
session authentication, cookie jars, and high-level session administration, such as
deletion of cookies. The proxy also handles downloading of the originating page
on demand, http authentication on behalf of the client, and any error handling
should the page be unavailable. Figure 3 highlights the main tasks performed by
the proxy.

After a page is downloaded by the proxy, the attribute system and filters are
invoked to apply any attributes defined by the site administrator. This includes
locating any objects that need to be modified within the page, and performing
any DOM manipulation. The proxy then creates a subdirectory for the user,
generates one or more static subpages, and creates any supporting images and
files as needed—the contents of which are controlled by the attribute system as
shown in Figure 2.



8 m.Site: Efficient Content Adaptation for Mobile Devices

The mobile client begins its interaction with a php file, which contains code
responsible for handling authentication and management specific to m.Site ses-
sions, as well as for providing a mobile-friendly entry point (snapshot and menu)
into the site. Upon starting a mobile session for the first time, the mobile browser
is issued a session cookie for maintaining state on the server. All of the files gen-
erated during a user’s session are stored in the file system under a (protected)
subdirectory created specifically for that user.

If the snapshot does not yet exist, it must be generated. The proxy first
loads the user’s cookie jar (as determined by the session cookie), and issues
a page fetch on behalf of the mobile client for the desired page, which includes
downloading any images to be rendered. The cookie jar is necessary as the proxy
itself must be authenticated on behalf of the user to view content privy to that
user. For publicly accessible forums, this would not be an issue, but typical online
communities provide access to private forums and user setting pages that require
authentication.

Once the page is fully downloaded, the HTML rendering engine can be em-
ployed to generate a snapshot of the page, save a low-fidelity version of that
snapshot to an image file, and generate an appropriate HTML/Javascript over-
lay to use the snapshot as a menu to other subpages. At the end of this phase,
the snapshot image and HTML can be sent to the client browser while the rest
of the subpages are generated. The user should be satisfied with seeing a familiar
screen shot and branding from the desired site.

For subpages, any attributes that need to be applied at the raw source level
can be applied at this point, which we refer to as the filter phase. This can
include extremely simple filters such as changing the doctype and title, or
blanketly removing css and script tags. Slightly more complex filters would
include rewriting all images to reference a low-fidelity image cache or different
server. The page could be completely adapted after just a few simple filters,
avoiding a DOM parse altogether, and assuming the snapshot is served from the
cache, the work of the proxy could be done at this point.

For more complex modifications, a DOM parse is necessary. The m.Site
framework has the capabilities of the popular source formatting tool HTML Tidy
[22] compiled in. This library is applied at the filter phase, and is used to con-
vert HTML to XHTML, which enables parsing by the wide array of XML/DOM
manipulation tools available, as most of the XML-based tools won’t handle mal-
formed XML. The m.Site framework is modular enough to allow different li-
braries to be employed for DOM parsing (and subsequent filters based on the
DOM tree), though for the next phase it is tightly integrated with the DOM
parse provided by WebKit.

At the end of the attribute phase, all newly-allocated subpages are written to
the file system in the client’s session directory (see Figure 1). Any pre-rendered
images are written to the client’s image subdirectory, and any newly-generated
shared images are written to the public cache. Some of the more powerful at-
tributes call for m.Site to generate the server side php code to manage any



m.Site: Efficient Content Adaptation for Mobile Devices 9

interactions required as a result of the custom attributes, for instance, to satisfy
AJAX requests.

Mobile client detection Detection of a mobile device can be accomplished in
a number of ways, but common practice is to use a set of heuristics that are kept
up-to-date with new browsers and devices1. For our purposes, it is assumed that
the client is already identified, and has either been automatically redirected to
the proxy, or has explicitly chosen to use the proxy service for a particular page.
Note that not all pages require a proxy to be mobile-friendly.

Object identification As a page is loaded for the first time, the proxy server
must have a way to identify objects on the page, so that attributes and content
adaptations can be applied.

The m.Site framework supports multiple object identification techniques, in-
cluding source-level rules and heuristics. As in other systems [12, 1], a DOM-
based approach is supported using XPath. Similarly, objects can be identified
using new CSS 3 selector support, since the framework integrates a server-side
port of the popular jQuery [8] DOM manipulation library. Page modifications
can be made directly to a parsed DOM. Likewise, modifications can also be
made at the source level, rather than by manipulating the DOM tree, which can
expose some optimizations.

3.3 Attribute System

The power of the m.Site framework originates from the very rich attribute sys-
tem, which makes it possible to customize a site’s layout and adapt its content for
mobile browsers. The attributes provide a site administrator with fine-grained
control over the rendering of pages, and also provides new adaptation techniques
not available in other systems, such as partial pre-rendering, a subset of which
is described below.

Pre-rendering. For complex pages, considerable time is spent in a mobile
browser downloading content, parsing, rendering CSS and HTML, and fetching
additional images. A page, subpage, object, or object group can be marked to
be completely rendered on the server side into a single graphic, saving much
computational effort on the mobile device. Additional attributes allow the ren-
dered image’s fidelity to be lowered, reducing network bandwidth. In the index
page of our test site, this technique can reduce wall-clock load time by a factor
of 5. Pre-rendered objects can be dynamically linked to subpages, creating a
mobile-friendly menu.

Page splitting. Any object, object group, or page can be split and set to
render in its own separate HTML file, thus creating a subpage. If the subpage
is combined with the pre-rendering attribute, it will be made up of simple pre-
rendered images. Otherwise, the HTML making up that object will still be intact,

1 See [7] for more information about the detection of a mobile device.



10 m.Site: Efficient Content Adaptation for Mobile Devices

and will be delivered to and rendered on the client’s browser. For instance, a
long column of links may be identified and moved to its own page.

Sub-subpages. Subpages can also be further split into more subpages. When
a subpage is split, it allows for a hierarchical navigation reminiscent of that
provided by [25].

Object dependencies. When a subpage is set to be rendered in its entirety
on the client side (HTML and CSS rather than a pre-rendered graphic), certain
objects such as scripts that are needed to render the subpage may only exist
in the master document or other subpages. By identifying these dependencies
in the visual tool, we allow Javascript, CSS, and other objects to be pulled
into the subpage as needed. This allows both non-visual and visual contents to
be repeated in multiple subpages. The approach taken in other systems is to
repeat head content on all subpages [25]. Unfortunately, this approach misses
cases, where Javascript and other functionality are located in the body of pages.
m.Site allows scripts and other content to be pulled from any portion of the
page, and duplicated on as many subpages as is desired. Similarly, content such
as ads, and navigational aids such as jump-menus can be made to appear on
every subpage. Since any object can be duplicated on any subpage, this provides
superior control over regular page-splitting approaches.

Javascript insertion / removal. Javascript functions can be dynamically in-
serted into the HTML source before rendering on the server, as well as after
rendering. For instance, to modify how the server renders, one script can be
used to manipulate the DOM tree to control certain layout elements, akin to [1].
For the client, a second script can be inserted to create a mobile-friendly navi-
gational menu from the rendered elements. This is sort of modification cannot
be realized by using Javascript-based content adaptation systems alone, such as
[1, 12].

Object insertion, removal, relocation, and replacement. When adapting a mo-
bile layout, we allow HTML, CSS, and Javascript to be manipulated by the proxy.
Objects can be inserted, for instance, to support adding an ad to the bottom
or a breadcrumb navigational element at the top of each subpage. Objects can
be hidden (via CSS style properties) when it arrives on the client, or stripped
out of the source completely. Objects can also be relocated or duplicated into
disparate subpages. Lastly, objects can be replaced entirely. For instance, if a
mobile-friendly version of a client Javascript API exists, the desktop-based li-
brary can be replaced outright. Another example is the replacement of a logout
button with a get parameter, which allows cookies to be cleared on the proxy.

Partial CSS rendering. A complicated CSS design can take much time to
render on a mobile device. Sometimes, it is desirable to take a portion of CSS
code, replace the text with stretched one-pixel placeholders (to allow the layout
engine to properly size the object), and take a snapshot of the rendered object.
We call this partial pre-rendering. The proxy takes responsibility for rendering
the graphical component, but uses Javascript to render the text on the device.
Thus, the rendered object can then be used as a background in a static subpage,
while the device only needs to draw text in the proper location.



m.Site: Efficient Content Adaptation for Mobile Devices 11

Image fidelity. As one would expect of content adaptation systems, objects
can be passed to a post-processor before being made available to the client,
allowing for manipulations in image fidelity and cropping. The attribute system
is used to supply parameters to the post processor. For instance, when a full page
is rendered into a high-fidelity png, it can consume upwards of 600K. This would
take considerable time and bandwidth to send to the device. A post-processor can
produce a reduced-fidelity jpg at 25-50k. When displaying a zoomed-out overview
page on a small device screen, the lowered image fidelity is not noticeable, and
only results in a faster load and rendering time.

Search. Search functionality is inherently lost when a web page is rendered on
the server side. Although restructuring the mobile layout into subpages reduces
the need to search, sometimes searchability is desired even on subpages, despite
the associated costs. Thus, we allow an attribute to be defined as “searchable”.
At rendering time, a sorted word index is built on the server from the textual
content read from the web page. The rendered location of each word is stored
in a Javascript array along with the word list, and the ordered search index is
then inserted into the subpage along with a Javascript binary search function. In
order for the client to make use of the search functionality, the site administrator
must define an HTML element (button or link) to make the initial Javascript call.
Thus, the search attribute effectively allows pre-rendered images to be searched.

Object caching. Certain areas of a site may be defined as cachable across
sessions, amortizing the initial pre-rendering cost across many users. Once a
cacheable object is rendered, it is placed into a pre-render cache on the server
and can be used by the attribute system as needed. Using the properties of the
cache attribute, for instance, a cached snapshot of the main page of a site can
be set to expire after an hour.

Sometimes it is necessary to be able to maintain interactivity for portions of
a site. For instance, some areas of the site may be protected with HTTP authen-
tication. If the proxy comes across a page that requires user input, the client
is redirected to a lightweight HTTP authentication page. Once authenticated,
the proxy stores this information and uses it on behalf of the client. Authen-
tication information is stored and maintained separately across users. HTTP
authentication can be set with the application of a single attribute.

Overall, the m.Site framework leverages these rich attributes to provide site
administrators with as much control over the mobilization of the site as possible.

4 Evaluation

In this section, we describe how the m.Site framework can be applied in a real-
world setting—a complex, template-driven dynamic web site. We present the
modification of the various content elements on the site’s main page as well as
those attributes that we ultimately select for deployment on the site. Finally, we
show our experimental results.



12 m.Site: Efficient Content Adaptation for Mobile Devices

4.1 Anticipated load

The site used for testing runs the popular vBulletin [15] forum software for
online communities. As of 2012, the site receives an average 2.2 million hits
per day with as many as 1200 users online at a time, and with a historical
doubling of traffic every 18 months. Like many catering to a growing and diverse
community of users understand, the site’s membership has grown large enough to
expect streamlined mobile access. Hence, this load drives the need for a scalable
and cost-effective mobilization solution. As vBulletin encompasses an active and
broad community of site administrators with varying skills and capabilities, it is
essential to provide a framework that is both accessible and useful, yet to be so
it must be scalable, cost-effective, and have minimal deployment requirements.

4.2 Target usage

Figure 4 shows the main page of the test site rendered from a desktop machine
at its native resolution. The site starts with a logo and leader board banner
advertisement, followed by a box of navigational links and a login form. Below
this is a transient box used for announcements, followed by a long list of about
30 forum descriptions (clipped for space) and links to each forum’s most recent
post. Underneath the forum listing is a display showing which members are
logged in, with links to each online member’s public profile. Toward the bottom
is a box of site statistics, a list of birthdays, public calendar entries, and finally
some additional navigational links. This layout is a nearly unmodified default
template reminiscent of thousands of online forums, and as such serves as a
suitable test candidate.

The entry page of the test site requires a total of 224,477 bytes to be received
from the network, inclusive of all images, external Javascripts (of which there
are about 12), and CSS files. On the BlackBerry Tour smart phone (528 MHz
processor), wall clock rendering time for this forum listing page is 20 seconds. For
a grounded comparison, a modern desktop browser renders the page in about 1.5
seconds. Over WiFi, a 3rd-generation iPod Touch (600 MHz) using the WebKit-
based Safari renders the page in 4.5 seconds, and 9 seconds over 3G.

Over time, the page has grown more complex to suit the desktop user. For
what is tantamount to a magazine’s table of contents, 20 seconds can be a
burdensome wait. Table 1 draws a comparison. By using m.Site to render a
snapshot of the page on the server side, the user perceives a significant reduction
in latency, and unlike text-based content adaptation, the site administrator still
delivers a branded look. The snapshot is overlayed using an image map with
links to content areas defined with the subpage attribute.

Though page load performance will be less of an issue as more modern,
standards-compliant mobile browsers become the norm, the site administrator
can still take advantage of content adaptation to mitigate the small form factor,
and facilitate quick access to information on-the-go. Even with the incredibly
responsive zoom capability of the iPod Touch, for many core site requests, only
a small amount of information is needed from the web page. For instance, looking



m.Site: Efficient Content Adaptation for Mobile Devices 13

Fig. 4. SawmillCreek.org Test site rendered at full resolution.

up flight cancellations in an airport usually only requires a small subset of the
functionality provided by most airlines on their web pages.

Fully zoomed in its native resolution, the BlackBerry Tour (480x325 browser
area) displays only a small window into the normal site, as shown by the upper
left box drawn in Figure 4. Such a small viewing window requires considerable
scrolling to read, both vertically and horizontally. Indeed, this is not even wide
enough to display a common leader board banner ad of 728 pixels wide, and
obviates the need to adapt this banner by replacing it with a mobile-specific
version. Ideally, this is done by selecting the ad and applying an attribute that
directs its replacement at the source level.

Just as an HTML page can take many forms, m.Site attributes can be applied
in many different ways, depending on the needs of the site administrator. A
mobile visit to an online weather site or movie theater should probably focus



14 m.Site: Efficient Content Adaptation for Mobile Devices

Device Wall-clock Time

BlackBerry Tour browser page load 20 sec.
Snapshot page generation 2 sec.
Cached snapshot page to Blackberry 5 sec.
iPhone 4 via 3G 20 sec.
iPhone 4 via WiFi 4.5 sec.
Desktop browser page load 1.5 sec.

Table 1. Comparison of wall-clock time from initial request to browsable page.

on providing local weather or show times as quickly as possible, then perhaps
national forecasts or box office descriptions. Recognizing that a mobile visit to an
online woodworking community is akin to reading a magazine, the focus of our
content adaptation on the entry page is to connect the reader with interesting
threads as efficiently as possible, while maintaining the site’s branding. Such a
decision is an important factor in determining which content to display more
prominently, while it should not cause functionality to be hidden on that basis
alone. Thus, even though we will employ attributes to emphasize the forum
listing, other functionality on the page will still be accessible to the user via
subpages (rather than removed altogether).

4.3 Applying attributes to the test site

A user will typically perform one of two actions when visiting the main page:
either logging in to access the site’s private areas, or browsing the forum listing
for interesting topics. Whereas the structure remains the same, the links on
the forum listing page continually change content as new discussion threads are
added. We detail how both of these areas are adapted for a mobile user as follows.

Upon visiting the site, the mobile user is presented with a quick-loading,
cached snapshot of the entire site. Application of this attribute gives the user
the satisfaction of an immediate response upon visiting the site. The snapshot is
pre-rendered, saved at low fidelity, and stored in a public cache for 60 minutes.
The image itself is also scaled down to prevent the user from having to zoom
in before clicking. The main idea is to present the user with the site’s overall
branding and an efficient means of diving into the desired site content.

The subpage attribute allows document fragments to be moved into subpages,
along with dependent CSS and Javascript snippets. As shown in Fig. 5, we have
applied the subpage attribute to the login form. Clicking the snapshot, where
the login form would have been, links the user to the login form subpage. The
login form elements have multiple dependencies in the original HTML source,
including CSS and Javascript, which are satisfied by inserting the dependent
scripts underneath the head tag in the subpage using a copy attribute.

The logo box (table and image) is also copied (rather than moved) to the top
of the login subpage, but the src attribute of the image is set to a mobile-specific



m.Site: Efficient Content Adaptation for Mobile Devices 15

Fig. 5. SawmillCreek.org login form subpage rendered as a result of applying page-
splitting, image replacement, and css injection attributes.

version of the logo. Figure 5 shows a screen shot of the adapted login subpage
rendered on a BlackBerry Storm.

All of the defined subpage attributes contribute to an image map overlay,
which is automatically generated for the main page snapshot. For each subpage
generated, the coordinates and extents of the original document elements must
be queried from the DOM, (in this case, the top left corner, height, and width),
and are used to draw clickable rectangular image map regions on the snapshot.
Each region links to its corresponding subpage. The queried coordinates map
to the original-size document, but since the snapshot is scaled down, the m.Site
framework implicitly translates the coordinates as well.

The site navigation links below the login box in the original site do not scale
down at all. When viewed on a small display, the result is a single horizontal
line of links (constructed as a table) that necessitates a horizontal scrollbar.
To mitigate, we apply an attribute to transform the DOM, stripping the links
from the segment and rewriting the HTML to list the links vertically, into two
columns.

Whereas the default action for a subpage attribute is to render into a sepa-
rate HTML file, setting one more attribute can allow the subpage to be loaded
asynchronously and on demand into a div element in the current page. That is,
any subpage can set to render into the current document using an asynchronous
http request (AJAX). The m.Site framework injects the needed Javascript func-
tions and creates appropriate div containers to enable this functionality on those
pages that require it. The container is hidden and empty by default. When dis-
played, it can be centered in the viewport. Thus, it gives the appearance of
being able to “activate” otherwise static portions of the pre-rendered snapshot,
all without reloading the page. This has the added advantage of saving band-
width and latency by not having to reload and parse large amounts of CSS and
Javascript. The site’s navigation links are loaded asynchronously through this
method.



16 m.Site: Efficient Content Adaptation for Mobile Devices

4.4 AJAX Support

Consider for a moment, the most typical use of asynchronous Javascript calls
on a given website: a user clicks on a link, causing data to be retrieved into a
DIV element, circumventing the cost of a full page load. At the low level, a user
clicks on a link, triggering a Javascript onClick event, which in turn instantiates
an asynchronous call to the server (usually a GET request), whose response is
then marshaled to another Javascript function serving as a handler to populate
a DIV element.

On mobile devices that support AJAX, such as Apple’s iPad, iPhone, and
Google Droid phones, no content adaptation is needed to maintain the original
interactivity of the website. That is, the original asynchronous calls can be em-
ployed on these mobile devices, saving full-page rendering costs as is the case on
desktop platforms. However, the next subsection shows how content adaptation
can be used for these devices.

For non-AJAX capable devices, like the Blackberry’s browser, content adap-
tation can be employed to restore AJAX-like interactivity. Previous work high-
lights a “remote browser in a proxy” metaphor [21] as a solution, but unfortu-
nately, this solution does not scale well. How then, can AJAX interactivity be
maintained without a remote browser?

As it turns out, the solution is simple—rewrite the link that gets sent to the
device, and embed an additional function for the proxy to satisfy the request.
For example, the following onClick handler for a “Show Picture” thumbnail
loads a larger picture version when clicked:

$("#picframe").load(’site.php?do=showpic&id=1’)

The original site has a server-side AJAX request handler invoked when the
action showpic and an id are supplied to the script. Upon validation (proper
session, security, and accessible id), the desired image is displayed. This link
would be adapted, using server-side jQuery, with a static call to the proxy, as
follows:

proxy.php?action=1&p=1

This illustration is invariably simple, but is easily extended. When a site is
integrated with the Google API and Yahoo (YUI) DOM API’s, the link transla-
tion is more complex, but just as easily performed by the framework. Why not
replace the link with a direct call to site.php? In more complex instances the
returned result is rarely a simple picture, and often contains XML or JSON and
must be massaged via Javascript. This can be handled easily and efficiently in the
php-based proxy augmented with server-side jQuery. Using a CSS3-style pattern
allows the content adaptation to be more robust to changes. The proxy’s action
is no more than a function, and the parameter p is its parameter representing
the id in the original call.



m.Site: Efficient Content Adaptation for Mobile Devices 17

4.5 AJAX Evaluation

Many popular “apps” for Apple’s iPad and iPhone platforms are site-specific
content-adaptation applications, which make navigation of data and page inten-
sive sites more convenient for mobile users, in spite of the fact that these devices
do already support AJAX, Javascript, and many HTML5 features.

To evaluate our approach, we choose to adapt a portion of the popular clas-
sified listing engine (CraigsList.com) using our proxy. Craigslist users browse
pages of classified listings organized by category and sorted by date; clicking on
a link brings the user to a new page with the contents of the selected ad. The
evaluation device is a 1st-generation iPad and we want to take advantage of its
extra screen real estate, to help the user locate desired information faster.

Craigslist does not ordinarily require any AJAX requests, which for a mobile
device means an overuse of the browser’s tiny back button, and continual reload-
ing of pages. Rather than designing a platform specific application through the
Apple developer network, we develop a browser-based content adaptation appli-
cation for Craigslist, which simplifies navigation by adding asynchronous data
loads.

Figure 6 shows the before-and-after results using our prototype. On the top
left is the original site rendered in Google Chrome containing a page of links to
classified ads. The second and third snapshots show the links and text identified
in the administrator tool, and the proxy code. The last illustration is the result
of content adaptation applied to the original page.

The adapted site is split into two DIV panes, with the left pane containing
the list of classified listings, and the right pane containing the detailed classified
listing. When an ad in the left pane is clicked, an AJAX call is dispatched to the
proxy in the manner previously described. The proxy checks the cache for the
downloaded page, and if it does not exist, fetches the page from CraigsList, per-
forms the content adaptation, and outputs it to the iPad as an AJAX response.
The result is a much more enjoyable browsing experience on the mobile device.

4.6 Limits to Scalability

As mentioned previously, our work is motivated by acknowledged scalability
issues with the approach used in [21]. In that system, a costly browser instance
is required for every client request. The core of our approach is to mitigate this
cost, by (1) amortizing rendering costs across multiple clients where possible,
and (2) only using a full-scale browser instance when absolutely necessary for
server-side graphical rendering. In most cases, the server-side browser metaphor
is maintained by our proxy as a lightweight and scalable substitute.

To illustrate the improvement offered by our approach, we conduct a series
of tests to measure the throughput (i.e., the number of satisfied requests) under
various load conditions. We simulate repeated client requests for a remote site,
while we vary the percentage of requests that require instantiation of a full
browser instance. Our tests are performed on commodity dual-core hardware
running Windows Vista, Qt, and WebKit, and do not make use of a thread



18 m.Site: Efficient Content Adaptation for Mobile Devices

Fig. 6. Adding AJAX calls to enhance Craig’s List for the iPad.

pool of browser instances. Using a browser pool can potentially violate security
assumptions if shared by multiple clients.

Figure 7 shows our results. The tests are performed three times per data
point, each over a one minute measurement window. The interarrival times be-
tween full-scale rendering requests are randomly distributed. A U[0,1] random
number is assigned to each request; if the number exceeds the percentage being
tested, the request is marked as not requiring a browser instance. As the figure
depicts, by limiting the number of requests requiring a graphical render, we are
able to increase the number of satisifed requests from 224 to 29038, two orders of
magnitude. We expect similar results on non-commodity server hardware as well.
For many sites like our test site, rendering the main snapshot is only required
once per hour and can be shared by multiple users. Caching and amortizing
rendering costs over thousands of clients makes the cost negligible.



m.Site: Efficient Content Adaptation for Mobile Devices 19

Fig. 7. Increased scalability with addition of lightweight proxy for majority of requests.

5 Conclusion

As more and more users access the Web via mobile devices, it becomes essential
for site administrators to adapt content for mobile users. However, mobilizing
existing content through templates and custom redesign is a costly, tedious,
and time-consuming process. Thus, tools to streamline the process are in great
demand. In this paper, we have presented the m.Site framework, a powerful
set of tools that bolster productivity and provide site administrators with the
ability to adapt web content for their mobile users. With a visual tool, a familiar
attribute paradigm, and an extensible server-side framework, a site administrator
can quickly generate code for content adaptation proxies that streamline site
functionality. By building a pluggable framework and only calling on a browser
instance when absolutely necessary, we have improved the scalability issues from
previous work. We have built a prototype of m.Site and validated its effectiveness
as a content adaptation tool on real online community websites.

Acknowledgements: We are grateful to the anonymous referees for their insightful
feedback. This work was partially supported by NSF grant 0901537 and ARO
grant W911NF-11-1-0149.

References

1. Greasemonkey. www.greasespot.net, 2009.
2. Greasemonkey user scripts. www.userscripts.org, 2009.
3. Platypus firefox extension. platypus.mozdev.org, 2010.
4. Apple dashcode. http://developer.apple.com/tools/dashcode/, 2012.
5. Apple webkit html engine. http://webkit.org, 2012.



20 m.Site: Efficient Content Adaptation for Mobile Devices

6. Browser compatibility information. www.quirksmode.org, 2012.
7. Detect mobile browsers. http://detectmobilebrowsers.mobi, 2012.
8. jquery, the write less, do more, javascript library. www.jquery.com, 2012.
9. Opera-mini browser. www.opera.com, 2012.

10. Skyfire mobile browser. www.skyfire.com, 2012.
11. T. Bickmore and B. Schilit. Digestor: Device-independent access to the world wide

web. In Proc. WWW-6, pages 655–663, Santa Clara, CA, 1997.
12. N. Bila, T. Ronda, I. Mohomed, K. Truong, and E. de Lara. Pagetailor: Reusable

end-user customization for the mobile web. In ACM MobiSys’07, San Juan, Puerto
Rico, June 2007.

13. Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting web page structure for adaptive
viewing on small form factor devices. In Proceedings of the 12th international
conference on World Wide Web, New York, NY, USA, 2003.

14. L. Deboosere, B. Vankeirsbilck, P. Simoens, F. De Turck, B. Dhoedt, P. Demeester,
M. Kind, F. Westphal, A. Taguengayte, and T. Plantier. Mobithin management
framework: design and evaluation. In 3rd international Workshop on Adaptive and
Dependable Mobile Ubiquitous Systems, London, United Kingdom, July 13 - 17
2009.

15. I. B. Inc. vbulletin forum software. www.vbulletin.com, 2012.
16. J. Kim, R. Baratto, and J. Nieh. pthinc: a thin-client architecture for mobile

wireless web. In 15th international Conference on World Wide Web (WWW),
Edinburgh, Scotland, 2006.

17. M. Md Fudzee and J. Abawajy. A classification for content adaptation systems.
In 10th international Conference on information integration and Web-Based Ap-
plications & Services, Linz, Austria, 2008.

18. I. Mohomed, J. Cai, and E. de Lara. Urica: Usage-aware interactive content adap-
tation for mobile devices. In 1st ACM European Conference on Computer Systems
(EuroSys’06), Leuven, Belgium, 2006.

19. I. Mohomed, A. Scannell, N. Bila, J. Zhang, and E. de Lara. Correlation-based
content adaptation for mobile web browsing. In ACM/IFIP/USENIX international
Conference on Middleware, Newport Beach, CA, 2007.

20. A. Moshchuk, S. Gribble, and H. Levy. Flashproxy: transparently enabling rich web
content via remote execution. In 6th international Conference on Mobile Systems,
Applications, and Services (Mobisys), Breckenridge, CO, 2008.

21. J. Nichols, Z. Hua, and J. Barton. Highlight: a system for creating and deploy-
ing mobile web applications. In 21st Annual ACM Symposium on User interface
Software and Technology (UIST ’08), Monterey, CA, 2008.

22. D. Raggett. Html tidy. http://tidy.sourceforge.net.
23. T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual network

computing. In IEEE Internet Computing 2, 1, pages 33–38, January 1998.
24. B. Schilit, J. Trevor, D. Hilbert, and T. Koh. m-links: An infrastructure for very

small internet devices. In 7th Annual international Conference on Mobile Com-
puting and Networking (Mobicom’01), Rome, Italy, 2001.

25. X. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W. Ma. Browsing on small displays
by transforming web pages into hierarchically structured subpages. In ACM Trans.
Web 3, 1, pages 1–36, January 2009.

26. Y. Zhang, X. Guan, T. Huang, and X. Cheng. A heterogeneous auto-offloading
framework based on web browser for resource-constrained devices. In International
Conference on Internet and Web Applications and Services, pages 193–199, 2009.


