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Abstract. SPADE is an open source software infrastructure for data provenance
collection and management. The underlying data model used throughout the sys-
tem is graph-based, consisting of vertices and directed edges that are modeled
after the node and relationship types described in the Open Provenance Model.
The system has been designed to decouple the collection, storage, and querying
of provenance metadata. At its core is a novel provenance kernel that mediates
between the producers and consumers of provenance information, and handles
the persistent storage of records. It operates as a service, peering with remote in-
stances to enable distributed provenance queries. The provenance kernel on each
host handles the buffering, filtering, and multiplexing of incoming metadata from
multiple sources, including the operating system, applications, and manual cura-
tion. Provenance elements can be located locally with queries that use wildcard,
fuzzy, proximity, range, and Boolean operators. Ancestor and descendant queries
are transparently propagated across hosts until a terminating expression is satis-
fied, while distributed path queries are accelerated with provenance sketches.

1 Introduction

The origin of SPADE [59] can be traced to a discussion in 2006 with a member of the
BaBar [5] project at SLAC [58]. BaBar consists of more than 500 physicists and engi-
neers, maintains petabytes of information in databases, and processes large volumes of
data using computational Grids that consist of computer clusters in multiple adminis-
trative domains. One conclusion from the discussion was that despite the long history
of research in distributed computing, the issue of how to ascertain the security of data in
Grid environments (with hundreds of users from scores of independent organizations)
was still open to debate.

Extant filesystems reported minimal information about the history of stored data,
leaving the task of maintaining such records to individual applications. While knowl-
edge of lineage would allow the trustworthiness of data to be ascertained, support to
answer such queries was limited (typically to determining the time and user involved
in the original creation and last modification of a file). The gap provided the impetus to
create SPADE in 2008 as a distributed service for collecting, certifying, and querying
the provenance of Grid data [56].

The first version (SPADEv1) tackled a combination of fundamental challenges, in-
cluding provenance growth and verification latency, as well as practical concerns, such
as the need to support legacy environments. SPADEv1 used selective provenance repli-
cation to increase distributed availability while limiting the storage overhead [15]. It



aggregated, reordered, and query-specifically pruned provenance elements to improve
latency and reliability when verifying responses [18], and embedded provenance wit-
nesses (precursors of sketches [17,39]) as hints to reduce extraneous remote connec-
tions in distributed provenance queries [18].

To collect provenance without modifying applications or the operating system, events
from a user space filesystem [50] were fused with process-related information from
/proc (on Linux). Unmodified applications could ensure that a file’s provenance was
transparently transferred across network connections. This was accomplished by ap-
pending the provenance to the content if the filename was suitably augmented when
the file was opened for reading, and analogously extracting and recording the appended
provenance at the other end if the file was saved with an augmented filename [16].

In late 2009, the NIGHTINGALE project [45] began experimental use of SPADEv1.
NIGHTINGALE involved experts from 15 universities and corporations concurrently
developing parts of a speech technology toolchain that processed terabytes of data
on hundreds of computers. We expected that the provenance of intermediate outputs
would be used to optimize the subsequent steps in workflows. In practice, application-
generated metadata was maintained for this. Instead, SPADEv1 was used to locate bot-
tlenecks in distributed workflows by adding support to capture input and output at-
tributes and recording them in the provenance. It was also actively used to identify code
and data dependencies when releasing new versions of the toolchain.

Given the number of institutions involved, we anticipated that provenance certi-
fication would be widely employed, but it was not. We learned that SPADEv1’s de-
sign meant certification was finer-grained than warranted in many situations. Similarly,
the architecture imposed a high overhead for incorporating additional provenance at-
tributes, experimenting with novel storage and indexing models, and handling prove-
nance from diverse sources. This motivated a redesign in 2010.
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SPADEV?2 is the second generation of our data provenance collection, management,
and analysis software infrastructure. The underlying data model used throughout the
system is graph-based, consisting of vertices and directed edges, each of which can be
labeled with an arbitrary number of annotations (in the form of key-value pairs). These
annotations can be used to embed the domain-specific semantics of the provenance.

The system has been completely re-architected to decouple the production, storage,
and utilization of provenance metadata, as illustrated in Figure 1. At its core is a novel
provenance kernel that mediates between the producers and consumers of provenance
information, and handles the persistent storage of records. The kernel handles buffer-
ing, filtering, and multiplexing incoming metadata from multiple provenance sources.
It can be configured to commit the elements to multiple databases, and responds to con-
current queries from local and remote clients. The kernel also supports modules that
operate on the stream of provenance graph elements, allowing the aggregation, fusion,
and composition of provenance elements to be customized by a series of filters.

SPADEV2 supports the Open Provenance Model [42,47] and includes controlling
Agent, executing Process, and data Artifact node types, as well as dependency types
that relate which process wasControlledBy which agent, which artifact wasGenerat-
edBy which process, which process used which artifact, which process wasTriggeredBy
which other process, and which artifact wasDerivedFrom which other artifact. Table 1
illustrates how each of these nodes and dependencies represented.

IOPM Node \Node Encoding \Graph Representation‘
Agent vertex Red octagon
Process

Process vertex Blue rectangle
Artifact vertex Yellow ellipse
IOPM Dependency Dependency Encoding \Graph Representation‘

Process
WasControlledBy edge Purple arrow (from Process to Agent)

Process

WasGeneratedBy edge Red arrow (from Artifact to Process)

Process
Used edge Green arrow (from Process to Artifact)

Process Process
WasTriggeredBy edge Blue arrow (from Process to Process)
WasDerivedFrom edge Yellow arrow (from Artifact to Artifact)

Table 1. SPADE can emit provenance graphs in Graphviz [21] syntax with Open Provenance
Model (OPM) semantics. The encoding of the provenance elements is summarized here. Prove-
nance domain semantics are added to the vertices and edges as annotations.



2 Provenance Kernel

The kernel is designed to be extensible in four ways. A reporter can be added to collect
provenance activity about a new domain of interest. A filfer can be inserted to perform
a new transformation on provenance events in the kernel. A storage system can be
introduced to record provenance in a new format. A sketch can be used to optimize
the distributed querying. The kernel is written in Java and uses a combination of the
runtime’s dynamic classloading and abstract classes to facilitate the concurrent addition
and removal of reporters, filters, sketches, and storage through the control client. A
different abstract class defines the framework for each type of extension and how it
interfaces with the kernel.

The control client maintains a history of commands, and allows a combination of
extensions to be saved to or loaded from a configuration file. When the control client
shuts the kernel down, callbacks are invoked in all extensions to shut them down grace-
fully (flushing buffered data as necessary) and the kernel’s configuration is saved so it
can be automatically loaded the next time it runs.

When SPADEV?2 is activated on a computer, the provenance kernel is launched as a
daemon that runs in the background. Its functionality can be invoked on demand with
low latency and imposes low overhead when not in active use. Initially, the kernel is
blind to provenance reporting, deaf to control and query clients, and mute about events
it has learned of. It uses saved configuration information, if available, to spawn threads
for each of the tasks described in Table 2.

Thread Service Provided
Reporters queue events programmatically in buffers that must then be emptied by
Provenance . . .
. a thread in the kernel. The thread extracts the events, filters them, and commits
Collection
them to local storage.
Remote Each kernel is implicitly part of a peer-to-peer provenance overlay, with a thread
Queries handling provenance queries from remote kernels.
Sketches A kernel on another computer may need a provenance sketch to optimize its dis-
tributed queries. Such requests are processed through a separate port and thread.
Local Interactive use with query clients requires extra information, including user
. prompts and error reporting, to be multiplexed with the responses to queries, and
Queries . . .
is therefore handled by a thread that is distinct from the one for remote queries.
Kernel Since the kernel operates as a background system service, it uses a thread to
listen for connections on a control port that then processes commands received
Control .
from the control client.

Table 2. The SPADE kernel is multi-threaded to allow provenance reporting, local and remote
querying, and reconfiguration of the kernel to operate concurrently.



When a provenance event occurs, SPADEv1 blocked until the activity had been
completely recorded. This had the advantage that the provenance records were always
synchronized with the state of the system (from which provenance events were derived).
However, it had the disadvantage that application performance was adversely impacted
by the latency introduced during input and output operations. The design choice had
been made to support workflows that used the provenance of intermediate data to decide
subsequent steps. In practice, the tight coupling was seldom necessary.

The SPADEv2 kernel provides a non-blocking interface for reporting provenance
events. While this ensures that the monitoring overhead for provenance collection is
minimal, it introduces a new concern. In scenarios where the rate at which provenance
is being reported varies significantly, there are periods when the kernel cannot process
events at the rate that they are arriving. In this situation, some events are lost. To mitigate
this, SPADEV2 creates separate buffers for each provenance reporter to enqueue events
into. A thread in the kernel then dequeues events when the load permits, processes the
events through any configured filters, and sends the results to persistent storage.

3 Generating Metadata
putVertex (Agent a);

putVertex (Process p);

Although users do maintain prove- putVertex (Artifact a);

nance records manually (in the form
of scientific laboratory notebooks, for
example), automating the generation
and collection of provenance metadata
substantially reduces their burden, im-
proves reproducibility, aids in debug-
ging, and increases the utility of their

data to other researchers. To facilitate Fig. 2. A reporter emits a provenance element by
this, SPADEv2 includes a number of calling the appropriate function, which queues it in
reporters that transparently transform 4 puffer. The kernel multiplexes elements from the
computational activity into provenance buffers of all reporters.

events that are sent to the kernel.

Each reporter utilizes the same interface to the kernel, abstracted in Figure 2. This
holds regardless of whether the provenance elements are manually curated, application
emitted, logged by a workflow engine, or from the operating system’s audit trail. The
domain semantics are captured as annotations on the vertices and edges.

putEdge (Used u) ;

putEdge (WasControlledBy wcb);
putEdge (WasDerivedFrom wdf) ;
putEdge (WasGeneratedBy wgb);
putkEdge (WasTriggeredBy wtb);

3.1 Operating System Provenance

The advantages of collecting data provenance at the operating system level are that it
provides a broad view of activity across the computer and that it does not require ap-
plications to be modified. The approach has a number of limitations, including the fact
that this may provide too much extraneous information and not enough detail about par-
ticular applications that are of interest. A significant consideration for software main-
tainability is how the system activity is obtained. Implementing a kernel module or



modifying system libraries requires a substantial investment in adapting the collection
mechanism to each currently available and future version of the operating system.

An alternative approach relies on utilizing the auditing mechanisms of each op-
erating system, which typically have stable programming interfaces across operating
system versions. The disadvantage of the technique is that it is limited to the infor-
mation exposed in the audit trail, which does not include records of interprocess com-
munication through shared memory, graphical user interface events, or keyboard input.
Nevertheless, the provenance collected suffices for characterizing the batch computing
workloads that are the staple of scientific computing workflows. In particular, this in-
cludes the process’s name, owner, group, parent, host, creation time, command line,
environment variables, and a file’s name, path, host, size, and modification time. The
types of provenance collected at the operating system level are summarized in Table 3.

Linux (System-wide):  An audit trail is needed for the Common Criteria cer-
tification of systems used by U.S. Government agencies. Linux vendors interested in
sales to this market contributed kernel changes to monitor activity across the entire host
and generate corresponding audit events. These are accessible through a Unix socket
(/var/run/audispd_events) after activating a system service (audispd) with an appropri-
ate plug-in. SPADEv2’s Linux reporter configures the audit system to generate records
for exec(), fork(), clone(), exit(), open(), close(), read(), write(), clone(), truncate(), and
rename() system calls.

Since Java does not support reading from Unix sockets, a utility written in C serves
as a bridge. The audit records are then parsed in the Java component of the reporter.
Reporting read() and write() events poses two challenges. First, the Linux audit records
contain only a file descriptor, so a mapping between descriptors and filenames has to be
built using information from open() calls. Second, reporting read() and write() events
would provide enough provenance metadata that system responsiveness would notice-
ably degrade. Consequently, these two calls are not reported. Instead, the flags of open()
calls are used to infer whether a process is reading or writing a file. If detailed input
and output records are needed, the alternative Linux reporter that focuses on selected
filesystem activity can be utilized.

Process-related information is obtained from two sources. When a system call oc-
curs, the kernel generates an audit record. The reporter extracts the process identifier
from this record. This identifier is then used to obtain further details about the pro-
cess from the Linux /proc filesystem, if available. Since the audit record is created
in the kernel but used in user space, it may be reporting the action of a process that
has already terminated, with no corresponding information available under /proc. In
this case, other elements of the audit record (such as the name, owner, and group of
the process) are used. On the surface, the approach employed appears to introduce a
time-of-check-to-time-of-use race condition. However, this is not the case since process
identifiers are allocated serially. A problem would manifest only if the process identifier
value wrapped through the entire possible range within the time window between the
check and use.

We found that network-related system calls (such as connect() and accept()) report
only the remote IP address and port information. The source IP address and port are not



recorded, preventing connections from being completely disambiguated. This weakness
is partially addressed by the Network reporter.

Linux (Selected activity): The hooks and module needed to support FUSE [14]
user space filesystems are present in all Linux kernels, starting with version 2.6.14. In
particular, interposition can be limited to file activity in a specific directory, eliminating
the monitoring of calls to files outside the subtree. This allows detailed provenance to
be recorded with low overhead for workloads that are localized to a single subtree (as
is the case with many scientific and engineering applications), including annotations on
used and wasGeneratedBy edges for the time spent in read() and write() calls.

The reporter includes C code that is linked against the FUSE shared library that
handles communication with the kernel. This code is invoked when read(), write(),
rename(), truncate(), link(), symlink(), readlink(), and unlink() filesystem calls occur,
and the arguments to each call are passed via the Java Native Interface (JNI) [31] to Java
code that transforms the filesystem event into appropriate provenance elements. The
identifier of the process that made the filesystem call is used to extract more information
about the process from the Linux /proc filesystem. Since the system call is blocked
during this step, the process record will always be present and the information extracted
will be current and accurate.

If a process does not interact with the filesystem, it will not trigger a FUSE event.
In this situation, no information would be collected about the process. To mitigate this
limitation, information about all ancestor processes is also extracted and added to the
provenance record. In this context, it is worth noting that when a process exits, the Linux
kernel changes the parent of all child processes to the parent of the exiting process. This
can result in multiple (consistent) accounts of the lineage of a single process.

Android (System-wide): Google’s mobile device platform, Android, uses a Linux
kernel. We therefore assumed that the audit-based Linux reporter would be usable for
collecting data provenance. However, a number of challenges arose, including the ab-
sence of audit code in the Linux kernel for ARM processors, and the audit daemon
auditd’s dependence on glibc functions not present in Android’s replacement bionic li-
brary. Using our patch (that is now part of Linux kernel 3.3) and modified audit utilities,
SPADEV2 can collect Android provenance. It is worth noting that this is lower-level ac-
tivity than would be generated by a reporter that instrumented Android’s Dalvik virtual
machine. Interactions between applications are captured using the transaction log (in
/proc) of the Binder inter-process communication mechanism.

Mac OS X (System-wide):  The Basic Security Module (BSM) system was
designed by Sun Microsystems. It includes a framework for generating, accessing,
and parsing audit records in a documented format. Apple had it ported to Mac OS
X to obtain Common Criteria certification. The open source version is maintained as
OpenBSM [46]. The Mac OS X kernel reports system events in real time. A process
with sufficient privilege can access the resulting records by reading the named pipe
/dev/auditpipe. Using an ioctl() system call, the pipe can be configured to spec-
ify which system events are of interest. The system-wide Mac OS X reporter consists
of C code that runs with setuid, configures the pipe, and then forwards the output to
unprivileged Java code where it is parsed and used to generate appropriate provenance



events. The set of system calls monitored includes fork(), exit(), kill(), read(), write(),
create(), and rename( ).

Each audit record includes the identifier of the process responsible for the action.
Since OpenBSM can be configured to record the command line arguments and envi-
ronment variables when a process is invoked, in principle the audit records should have
sufficient process-related information. However, the OpenBSM subsystem on OS X
Snow Leopard does not audit the spawn() system call, which is used by the Finder to
launch applications. Therefore, even though fork() and exec() calls are audited, a signif-
icant amount of process-related provenance is lost (since processes started with spawn()
are not observed). To address this limitation, the reporter extracts the process identifier
and obtains further information about the process with the ps utility. This approach can-
not collect information about a short-lived process that may have terminated before ps
was invoked. It is worth noting that the serial allocation of process identifiers ensures
that information about the wrong process is never collected.

Since system-wide activity is monitored, only the first read from and write to a
file by a process are recorded to minimize the performance overhead. The alternative
Mac OS X reporter (that focuses on selected filesystem activity) can record details
about reads and writes, should that level of detail be needed. Further, when network
connections occur, the BSM records generated have invalid IP addresses on OS X Snow
Leopard and OS X Lion, preventing the construction of provenance artifacts to represent
the connections. The Network reporter attempts to address this weakness.

Mac OS X (Selected activity): An alternative reporter for Mac OS X that lever-
ages the MacFUSE [37] user space filesystem was developed to limit provenance col-
lection to a subtree in the filesystem. This facilitates managing the overhead associated
with recording read() and write() calls. The reporter contains C code that is called when
read(), write(), rename(), link(), symlink(), readlink(), and unlink() calls occur. Each in-
vocation results in a call through JNI to Java code that converts the filesystem event into
a corresponding provenance event.

Information about the process that made a filesystem call is obtained with the ps
utility. In contrast to the system-wide reporter, where the invocation of ps is not syn-
chronized with the system call being audited, here the filesystem call blocks during the
invocation of ps, ensuring that metadata is collected even for short-lived processes.

As with the Linux FUSE-based reporter, a process that does not interact with the
filesystem does not trigger the collection of its provenance. This prevents descendant
processes from being linked to ancestor processes, and creates a problem in practice
with gaps in provenance chains. To mitigate this issue, when information is collected
about a process, records are constructed for all known ancestor processes as well.

Though MacFUSE requires administrator privileges to be installed (since it uses a
Mac OS X kernel extension), it is used by numerous other software packages and may
already be installed and available on the user’s system. This is of particular utility in
situations where the user does not have permission to install a sefuid program (as is
needed for the system-wide Mac OS X reporter).

Windows (System-wide): Microsoft’s Event Tracing for Windows (ETW) [10]
framework allows application developers to use system-level information for debugging
and performance analysis. Since ETW provides a documented interface for collecting



information about operating system activity, we used it to generate provenance records.
However, ETW provides process identifiers only in event descriptions, necessitating
the use of Microsoft’s Windows Management Instrumentation (WMI) [66] framework
to obtain details such as a process’s name, binary location, creation time, and command
line.

When ETW generates file events, it records the associated filenames internally but
does not make them available until the end of the tracing session. This prevents the
online generation of provenance artifacts. Microsoft’s Windows Driver Kit (WDK) [63]
includes the Installable File System (IFS) Kit [28], which can be used to write filters
that intercede on filesystem calls. We developed an IFS filter to monitor file creation,
reads, and writes.

Consequently, our initial Windows reporter consisted of C++ code that interfaced
with the ETW, WMI, and IFS subsystems. The C++ code has been replaced by an invo-
cation of the Process Monitor tool [49], which interfaces with the Windows subsystems
and emits a log. The Windows reporter now parses the events in the log and transforms
them into provenance elements that are sent to the SPADEV2 kernel.

The approach of relying on an external tool to collect system activity resolved three
issues. First, it allows the reporter to run on all versions of Windows released after 2000.
In contrast, the initial reporter supported only a single version of the operating system
since the programming interfaces of ETW and WMI differ across releases of Windows.
Second, it eliminates the need for IFS driver signing since Process Monitor has a signed
kernel driver. Third, it eliminates a dependency on Microsoft source code that could not
be redistributed with SPADEvV2 due to an incompatible license.
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Table 3. In this summary of operating system provenance reporting, a check mark in a cell indi-
cates that the operation listed in the column is recorded by the reporter listed in the row. The last
row depicts the Open Provenance Model semantics of the operation.



Network: SPADE aims to support provenance queries about distributed compu-
tations. Whereas SPADEv1 was limited to noting the relationship between a source and
destination file when a remote copy occurred, SPADEV2 explicitly models a network
connection as a pair of network artifacts connected by used and wasGeneratedBy edges.

Network artifacts (depicted by green diamonds in Table 3) are distinguished by the
property that each endpoint can independently construct the same artifact without ex-
plicit coordination. This allows the complete decentralization of provenance collection
in distributed systems while still ensuring that subgraphs from different hosts can be
reassembled into a coherent reconstruction of distributed data provenance. SPADEv?2
implements network artifacts with this property combining the time the connection was
initiated with the IP addresses and TCP or UDP ports of the two endpoints.

None of the Linux or Mac OS X reporters have access to correct source and desti-
nation IP address and TCP or UDP port information. Consequently, a separate reporter
uses the [sof [35] utility in repeat mode to poll the operating system and periodically
retrieve a list of recent connections. These are transformed into provenance semantics
and then sent to the SPADEvV?2 kernel. While the reporter is not asynchronously notified
of new connections, it is able to report network provenance metadata within a second
of the connection’s occurrence. The synchronous inspection of network activity means
that short-lived connections are unlikely to be reported.

3.2 Application Provenance

An advantage of collecting data provenance from the operating system, as described
in Section 3.1, is that applications can be monitored without any provenance-specific
modifications. However, instrumentation at this level of abstraction results in an op-
erating system process being modeled as a monolithic entity. Since intra-process data
flow (such as memory reads and writes) is not recorded, internal application-level de-
pendencies cannot be differentiated. Further, the provenance semantics of interest in
an application may manifest at a higher level of abstraction than operating system in-
terfaces. SPADEV2 includes two types of support for collecting application-level data
provenance on both Linux and Mac OS X.

Domain-Specific Language: In late 2010, scientists at SRI were managing large
volumes of mass spectroscope data. They were interested in using SPADEvV2 to track
the computational manipulation of the records. Since the steps were performed in MAT-
LAB [40], we needed a mechanism to communicate provenance information from an
external application to the SPADEv2 kernel.

One possible approach would have been to create a dynamically linked library with
functions for reporting provenance metadata, similar to Harvard’s Core Provenance Li-
brary [38]. We adopted an alternative approach for a number of reasons. First, the target
application’s source would have to be available, which is not the case for commer-
cial applications such as MATLAB. Second, determining where to insert the calls to the
provenance reporting functions would require extensive study of the target application’s
codebase. Third, the library would reside in the address space of the target application,
leaving the issue of communicating the metadata to the SPADEvV2 kernel unresolved.

Instead, we developed a reporter that creates a named pipe, continuously reads from
it, parses any information it retrieves, and constructs appropriate provenance elements



that are then sent to the SPADEV?2 kernel. Provenance metadata can be sent to the re-
porter by any source that can write to a named pipe, including external applications
and users interested in manually adding provenance records. The provenance metadata
must be stated in a simple OPM-inspired domain-specific language. The corresponding
context-free grammar is shown in Backus-Naur Form in Figure 3.

<provenance> ::= <provenance> <element> | <element>
<element> ::= <node> | <dependency>
<node> ::= <node-type> <node-id> <annotation-list>
<node-type> ::= type: <vertex—-type>
<vertex-type> ::= Agent | Process | Artifact
<node-id> ::= id: <vertex-id>
<vertex—-id> ::= <unique-identifier>
<annotation-list> ::= <annotation-list> <annotation> | <annotation>
<annotation> ::= <key> : <value>
<dependency> ::= <dependency-type> <start-node> <end-node>
<annotation-list>
<dependency-type> ::= type: <edge-type>
<edge-type> ::= WasControlledBy | WasGeneratedBy | Used |
WasTriggeredBy | WasDerivedFrom
<start-node> ::= from: <vertex-id>
<end-node> ::= to: <vertex-id>

Fig. 3. The grammar for the domain-specific language that can be used by external applications
to report Open Provenance Model metadata to the SPADEvV2 kernel.

Compiler-Based Instrumentation: = Manually instrumenting an application to
emit provenance metadata requires a substantial effort. This becomes decreasingly ten-
able as the scale of the software system increases. To address this, we developed LLVM-
based [34] compiler support to automate the process of instrumenting an application to
emit intra-process provenance information at function call granularity [61].

In many instances, the function call level of abstraction corresponds to what the
user is interested in. However, this may still result in reporting far more information
than the user is interested in since every function call will be reported. To avoid over-
whelming the user with extraneous information, we allow only the functions that are of
interest to be specified. The program sources are statically analyzed to obtain the appli-
cation’s call graph, which is then traversed in a reverse reachability analysis to identify
which functions should be reported. Provenance metadata about all other functions is
discarded.

An advantage of recording provenance at the finer application function call level
is that it reduces the process-level dependency aliasing that results when collecting
provenance using system calls. For example, the provenance of data transmitted over a
network connection includes all the files read until that point by the server, if provenance
is collected at the operating system level. If individual threads read different files and



sent them to distinct network connections, well-structured code would allow function
call level provenance to distinguish the dependencies.

In practice, users are interested in the values of arguments to function calls. How-
ever, providing meaningful information about the arguments requires knowledge of
their types, which is often lost in the process of compiling from the source language
to LLVM’s intermediate representation, bitcode. Since provenance instrumentation is
inserted in the bitcode, only pointers to such values can be reported.

4 Persistent Storage

SPADEv1 used a relational database to store the provenance metadata as it was being
collected. This meant that provenance collection could proceed only at the rate that
transactions could be committed to the database. Graph queries were constructed as
SQL queries, with repeated self-joins to compute the transitive closures necessary to
answer path queries. The addition of new attributes resulted in changes to the relational
schema. Each of these contributed to performance degrading as the provenance graphs
grew in size. For users collecting large volumes of provenance metadata and primarily
initiating graph queries, a graph database seemed to be a better option.

Despite the limitations of storing provenance in SQL databases, it remained an at-
tractive option for some users. This is the case if the quantity of provenance is smaller
(as is the case when provenance is collected from a source reporting it at a higher level
of abstraction or over a shorter span of time), the query workload is well supported
by relational operators, or the user has SQL infrastructure and experience that can be
leveraged.

SPADEV2 allows arbitrary types of persistent storage to be used as a back end. It
does this by defining an abstract storage interface. An adapter for a back end implements
the subset of the storage interface that the repository can support. The query interface
forwards requests without interpreting them. This allows the SPADEv?2 kernel to utilize
the native query capabilities of each type of storage.

Neodj: Neodj[44]is a high-performance cross-platform graph database with sup-
port for transactions. It allows vertices and edges to be typed and annotated, provides a
rich set of graph querying functionality, and incorporates Apache Lucene [36] indexing
of the graph data. Lucene provides Boolean, wildcard, fuzzy, proximity, range, boost-
ing, and grouping operators for flexible querying. Neo4; is the default database used by
SPADEV2.

SQL: To facilitate storing provenance in SQL databases, SPADEv2 includes a
JDBC-based [30] storage adapter. By default, the SQL adapter uses the cross-platform
embedded relational database, H2 [27]. However, it can also use an alternative JDBC-
compliant database, such as MySQL [43], by specifying the driver at activation. The
adapter supports recording provenance elements in vertex and edge tables, and SQL
queries over these tables, but does not implement graph functionality in the storage
interface, such as path queries.

After the SQL storage has been loaded, every provenance node is added as a new
row in the table of vertices. When an annotation has a key that has not previously been
observed, the table’s schema is extended with a new column for the key. The value in



an annotation is stored in the cell corresponding to the row of the vertex and the column
of the key. Incoming dependencies are similarly added to the table of edges, with the
schema continuously evolved to handle new keys in annotations on edges.

Graphviz:  Graphviz [21] was created in 1988 by AT&T Research to facilitate
graph visualization. Over the years, visualization and analysis tools have adopted the
Graphviz DOT language for storing and manipulating graph data. Once the SPADEv?2
Graphviz storage is loaded, every provenance element and dependency is output in
DOT syntax to a file. This file can then be used with Graphviz tools that employ a
variety of graph layout algorithms, as well as a wide range of other graph visualization
applications. Querying is not supported by the Graphviz storage.

5 Filtering

Automated provenance collection can result in large volumes of metadata. As more in-
formation is generated and stored, both the precision and performance of queries start
to degrade. One strategy to address this is to abstract the information and filter out el-
ements if possible. In addition, when provenance is collected from multiple sources,
normalizing and reconciling the streams before they are committed to persistent stor-
age can improve subsequent query precision and performance. Therefore, the SPADEv2
kernel supports aggregation, fusion, and composition filters that can be used to normal-
ize and reconcile provenance elements [19].

Temporal Aggregation: In environments where numerous low-level events are
generated, aggregation can mitigate information overload. For example, the provenance
elements of a group of readings that are close in value and from a network of sensors
can be combined into one provenance element that describes the set of sensors and the
value range. An analogous incentive is present for the provenance of data from cyber-
physical systems such as SCADA process controllers, but with aggregation occurring
over the time variable instead of the spatial one of sensor networks. When the readings
do not change, the provenance elements can be aggregated into one that includes the
interval of invariance. SPADEV2 includes a filter with the same motif for operating
system provenance, where the provenance of a non-interleaved sequence of reads or
writes can be replaced with a single provenance element that has an annotation added
to describe the start and end points of the sequence.

Multi-Source Fusion: When two or more reporters report provenance about the
same phenomena, the semantics of the reported events may overlap. If the reporters op-
erate at similar levels of abstraction, fusion allows distinct provenance elements (gen-
erated by different reporters) to be combined to provide a more complete representa-
tion of the same underlying phenomenon. As an example, reporters that capture events
across the whole operating system typically report with coarse temporal granularity. A
reporter that focuses on selected filesystem activity can track and add annotations about
the exact quantity of time spent for each read () or write () operation for appli-
cation profiling. SPADEV2 includes a filter to reconcile the two perspectives through
fusion keyed on a common key (such as the process identifier), allowing a single view
of operating system activity with the input and output times added to the appropriate
used and wasGeneratedBy edges.



Cross-Layer Composition: When reporters operate at different levels of abstrac-
tion, composition can relate the activity with an isAbstractedBy edge. For example, the
Process vertex for a function call can have an isAbstractedBy edge to the operating sys-
tem Process vertex of the application in which the call occurred. Such edges can be used
to connect provenance from the LLVM-based intra-process level provenance reporter
described in Section 3.2 and an operating system-level provenance reporter described
in Section 3.1.

6 Evaluation

To evaluate the performance of SPADEv2, we measured the overhead of collecting
provenance while building and running the Apache Web server [4] and running the
BLAST genome sequence alignment tool. SPADEv2 was run in the background on
Mac OS X 10.6.8, Linux Fedora 17, and Windows 7 with system-wide reporters. All
experiments were performed on a 2.4 GHz Intel Core i5 machine with 4 GB of memory.
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Fig.4. Number of provenance elements generated over time during the build process of the
Apache Web server on Linux is reported.

To provide insight into the rate at which provenance elements are generated, Figure
4 shows the count of different types of provenance elements as they are emitted while
the Apache Web server is being built. The Linux reporter for selected activity was used
to collect the provenance metadata.

Figure 5 reports the time to build the Apache Web server on Windows, Mac OS
X, and Linux. This time is reported for an unmodified system as well as one that has
been augmented with SPADEV2 to collect provenance with a system-wide reporter.
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Fig.7. The time to run the BLAST genome sequence alignment tool on multiple operating sys-
tems is measured to understand the overhead of collecting provenance during a heavy workload.



The comparison is intended to provide an understanding of the overhead incurred by
collecting provenance during a compute-intensive task. The Windows reporter imposes
a 53% overhead during the Apache build, presumably because a wide range of system
calls are invoked and audited. On Mac OS X and Linux, the overhead was less than
10% and 5%, respectively.

To understand the overhead of collecting provenance when a service is running, the
Apache Web server was run on Windows, Mac OS X, and Linux. In each case, the rate
at which the Web server is able to handle requests is reported in Figure 6. This is done
for both an unmodified system as well as one where SPADEV2 is running and collect-
ing provenance with a system-wide reporter. When provenance is being collected, the
performance of Apache drops by 9% on Windows and 12% on Mac OS X and Linux.

To estimate the overhead of collecting provenance when using a scientific applica-
tion, we ran the BLAST [3] genome sequence alignment tool with the influenza data
set [29] from the National Institutes of Health. Figure 7 shows that when provenance
is being collected, the overhead imposed on Windows, Mac OS X, and Linux is 9%,
6%, and 12%, respectively. Since the tool invokes a limited number of system calls, the
difference in overheads is likely an artifact of the set of calls being utilized.

7 Related Work

Data provenance has a range of applications. HP SRC’s Vesta [24] uses it to make
software builds incremental and repeatable. Lineage File System [55] records the input
files, command line options, and output files when a program is executed. Its records are
stored in a database that can be queried to reconstruct the lineage of a file. Provenance-
Aware Storage System [51] augments this with details of the software and hardware
environment. The provenance of Datalog programs has been tracked with semi-rings
[22].

Several Grid environments account for data provenance in their design. "YGrid
[67] with Taverna [2] allows biologists to add application-level annotations of the data’s
provenance. This is then stored in the user’s repository, although it does not enable other
users of the data to determine its provenance. The Provenance Aware Service Oriented
Architecture (PASOA) project [41] arranges for data transformations to be reported to
a central provenance service [60], which can be queried by other users as well. The
more recent ES3 model [13] extracts provenance information automatically from ar-
bitrary applications by monitoring their interactions with their execution environment
and logs them to a customized database. While ES3 logs events at a more abstract level
than PASS, it follows the same centralized model of metadata logging. The approach
ensures that the provenance does not have to be replicated. However, in the event that
the metadata is heavily accessed, the latency of performing remote lookups can degrade
application performance.

A number of distributed systems have been built to help scientists track their data.
Chimera [11] allows a user to define a workflow, consisting of data sets and transforma-
tion scripts. The system then tracks invocations, annotating the output with information
about the runtime environment. CMCS [48] is a toolkit for chemists to manage experi-
mental data derived from fields like combustion research. It is built atop WebDAV [64],



a Web server extension that allows clients to modify data on the server. ESSW [12] is a
data storage system for earth scientists. If a script writer uses its libraries and templates,
the system will track lineage so that errors can be tracked back to maintain the quality
of data sets. A number of systems track the provenance of database elements, including
Trio [65], DBNotes [6], and Perm [20]. Trio also allows the source of uncertainty to
be traced. VisTrails [57] tracks the provenance of visualization workflows. Bose and
Frew’s survey [7] identifies a number of other projects that aid in retrieving the lineage
of scientific data.

PASS describes global naming, indexing, and querying in the context of sensor
data [53]. PA-NFS [52] enhances NFS to record provenance in local area networks.
Harvard’s PQL [26] describes a new language for querying provenance and leverages
the query optimization principles of semi-structured databases. However, it does not
consider distributed naming explicitly. SPADEv2 addresses the issue by using storage
identifiers for provenance vertices that are unique to a host and requiring distributed
provenance queries to disambiguate vertices by referring to them by the host on which
the vertex was generated as well as the identifier local to that host.

ExSPAN [68] allows the exploration of provenance in networked systems and ex-
tends traditional relational models for storing and querying provenance metadata, while
SPADEV2 supports both graph and relational database storage and querying. PASS has
explored the use of clouds [53,54]. Provbase [1] uses Hbase, an open-source imple-
mentation of Google’s BigTable [9], to store and query scientific workflow provenance.
IBM researchers have proposed a provenance index that improves the execution of for-
ward and backward provenance queries [32]. A number of efforts, including SPADEv2,
have recently considered how to compress provenance [68,39]. Query optimization
techniques on compressed provenance data has also been examined [25].

The Open Provenance Model (OPM) [42,47] facilitates interoperability between
systems by providing a common model for describing provenance. Several projects pro-
vide OPM-compliant provenance, including SPADEv2 [59], PASS [52], VisTrails [8],
and Tupelo [62]. An OPM profile [23] provides conventions for modeling distributed
aspects of provenance, such as transactions. However, query interoperability and global
naming are not addressed.

8 Conclusion

SPADEvV2 provides a cross-platform distributed data provenance collection, filtration,
storage, and querying service. It defines reporters that can be inserted between an ap-
plication and the operating system, between functions of an application, or at arbi-
trary user-defined interfaces. Once inserted, the infrastructure operates as middleware,
monitoring the targeted applications and enabling provenance analysis for a variety of
purposes, including facilitating experiment reproducibility, distributed debugging, and
determining dependencies when sharing data and code. We empirically compared and
reported the cost of running applications with and without the middleware.
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