
HAL Id: hal-01555556
https://inria.hal.science/hal-01555556

Submitted on 4 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MORENA: A Middleware for Programming
NFC-Enabled Android Applications as Distributed

Object-Oriented Programs
Andoni Lombide Carreton, Kevin Pinte, Wolfgang De Meuter

To cite this version:
Andoni Lombide Carreton, Kevin Pinte, Wolfgang De Meuter. MORENA: A Middleware for Pro-
gramming NFC-Enabled Android Applications as Distributed Object-Oriented Programs. 13th In-
ternational Middleware Conference (MIDDLEWARE), Dec 2012, Montreal, QC, Canada. pp.61-80,
�10.1007/978-3-642-35170-9_4�. �hal-01555556�

https://inria.hal.science/hal-01555556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MORENA: A Middleware for Programming
NFC-enabled Android Applications as
Distributed Object-Oriented Programs

Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{alombide,kpinte,wdmeuter}@vub.ac.be

Abstract. NFC is a wireless technology that allows software to interact
with RFID tags and that is increasingly integrated into smartphones and
other mobile devices. In this paper, we present MORENA: a middleware
that treats NFC-enabled programs as distributed object-oriented pro-
grams in which RFID tags are represented as intermittently connected
remote objects. We draw inspiration from the ambient-oriented program-
ming paradigm to represent these objects as first-class remote references
which only offer asynchronous communication with the tag to which they
refer. This allows the programmer to implement mobile applications that
read from or write to RFID tags without having to handle every single
fault manually and without blocking the entire application during read
or write operations. We built MORENA on top of the Android plat-
form and evaluated our abstractions by implementing a representative
application running on NFC-enabled Android phones using MORENA.

Keywords: RFID, mobile applications, Android, pervasive computing

1 Introduction

The Internet of Things [1][2] research vision can now be implemented using
mainstream hardware. Smartphones and other mobile devices are increasingly
equipped with NFC (Near Field Communication) chips that allow to read and
write a wide range of RFID tags. The most prominent ones are high-end phones
running Google’s Android platform [3], such as Google’s Nexus S. One of the
reasons is that companies such as Google are interested in mobile payment appli-
cations, such as Google Wallet [4]. However, such applications are only a fraction
of what is possibly with an NFC-enabled smartphone. Unfortunately, current
APIs that allow the programmer to implement NFC-enabled applications are
designed for very specific scenarios (such as mobile payment) and hence exhibit
a number of drawbacks that make developing more complicated applications
hard and error-prone.



2 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

1.1 Drawbacks of the Android NFC API

MORENA (MObile RFID-ENabled Android middleware) is designed around the
Google Android NFC API, currently to our knowledge the most advanced NFC
API for mobile devices that is available in the mainstream. This API is designed
to cover the bare essentials to allow the programmer to implement NFC-enabled
applications while not having to deal with every single hardware detail. Still, it
suffers from a number of drawbacks, which we describe below.

Synchronous communication. Read and write operations on RFID tags are
blocking operations in the Android NFC API. This means that a program per-
forming such operations is suspended until these operations succeed or fail. Since
these operations are slow in comparison with the rest of the program, the appli-
cation becomes unresponsive when not carefully used. Therefore, the documen-
tation of the API strongly recommends to run RFID operations in a separate
thread. This burdens the programmer with manual concurrency management,
which is hard and error-prone.

Coupling in time. Reading or writing RFID tags frequently fails because the
tag in question is out of range. Especially with tiny NFC chips as the ones
found in mobile devices, failure is the rule instead of the exception. Manually
dealing with faults requires every single RFID operation to be protected with
exception handling code, further complicating the application code. In many
cases, operations will succeed shortly after their first failed attempt because of a
small change in the physical environment, such as an RFID tag that is positioned
differently with respect to the smartphone. This causes the programmer to write
looping code merely for retrying failed operations. We say that communication
is coupled in time.

Manual data conversion. The Android NFC API abstracts away the low-
level memory layout of RFID tags. Still, the programmer must manually convert
application-specific data that has been read from or that will be written to an
RFID tag. This means that when RFID operations are separately developed from
the application logic, the application programmer must have internal knowledge
of these operations to understand how he or she should convert application-
specific data to a suitable representation for storage on the RFID tags’ memory.
This is error-prone because the API does not enforce specific data conversions
to be associated with specific applications and RFID tags.

Tight coupling with activity-based architecture. Android applications
are always activities: special Java objects representing an Android GUI with
a thread of execution. It is via these activities that the application is notified
of I/O and user interface events (by means of intents) such as RFID events.
Although this event-driven API makes it straightforward to override a number of



MORENA: A Middleware for NFC-Enabled Android Applications 3

callbacks that capture these events and directly undertake the necessary actions
in the activity code, it also introduces a tight coupling of the RFID operations
with activities (i.e. the user interface). This makes it harder to perform RFID
operations outside of the context of such an activity.

1.2 Ambient-oriented Programming

In this paper, we consider interaction with an RFID tag a distributed comput-
ing problem as opposed to traditional I/O. More specifically, we draw inspiration
from the ambient-oriented programming paradigm [5], which is a programming
paradigm targeting distributed systems consisting of mobile devices intercon-
nected via unreliable, ad hoc wireless networks. Indeed, NFC can be regarded as
an unreliable, ad hoc wireless communication technology while RFID tags can
be considered as simple remote devices.

We have previously integrated RFID into ambient-oriented programming [6]
by relying on non-mainstream RFID hardware and by building dedicated ab-
stractions into an ambient-oriented research language called AmbientTalk [7].
In this work, we crystallize the ideas behind this research into an implementa-
tion on top of mainstream hardware (namely Android smartphones) and using
mainstream programming technology (namely the Android platform in the Java
language). The concepts from ambient-oriented programming discussed below
are carried over as follows.

Tracking of connectivity. Ambient-oriented programs must keep track of
which services become available and unavailable as devices roam. Similarly, an
RFID-enabled application must be able to keep track of which RFID tags are
currently in and out of range and be notified of changes in the connectivity with
the tags it is interacting with.

Asynchronous communication. All distributed programming systems have
primitives for sending and receiving data across the network. Ambient-oriented
programming requires these primitives to be non-blocking: a process or thread
of control should not be suspended if the operation cannot be completed im-
mediately. This requirement is based on the fact that in an unreliable network,
communicating parties can often be unavailable, and making a communication
operation block until the communicating party is available may lead to unaccept-
able delays. Non-blocking communication is also known under the term asyn-
chronous communication, the style of communication now also popular in rich
web applications using AJAX that should not block the web interface. Similarly,
for RFID-enabled applications, communication with an intermittently connected
RIFD tag should not block the application when the tag is temporarily out of
communication range.

Decoupling in time. Unreliable wireless connections require communication
models that can abstract from the network connectivity between communicating



4 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

processes. It should be possible for two processes to express communication
independently of their connectivity. This significantly reduces the case-analysis
for the programmer, which can reason in terms of a fully connected network
by default, and can deal with border cases in an orthogonal way. Similarly,
exchanging data with an intermittently connected RFID tag is prone to many
failures. In many cases, multiple attempts at reading from or writing to an
RFID tags memory are needed before an operation succeeds. This should happen
without immediately signaling an error for every single fault to the programmer.
Instead, the implementation should retry these operations without blocking the
application or signaling an error.

First-class references to remote objects. Decoupling in time is achieved by
storing sent messages in an intermediary data-structure. This makes it possible
for communicating parties to interact across unreliable connections, because the
logical act of information sending is decoupled from the physical act of informa-
tion transmission, allowing for the information to be saved and transmitted at
a later point in time when the connection between both parties is restored.

In AmbientTalk, remote services and RFID tags are represented as remote
objects which are always referred to by a remote reference called a far reference.
These far references (first proposed in the E language [8]) are first class, encap-
sulate the identity of a remote object and store messages directed towards the
remote objects that could not be sent due to physical phenomena. Additionally,
far references encapsulate a thread of control that, in response to connectivity
changes with the object which it refers to, attempts to forward its stored mes-
sages (in the correct order). Far referencers offer an asynchronous interface such
that the programmer can register observers on it to be notified of connectivity
changes and messages being successfully sent or timed out.

1.3 Approach

It was our goal to integrate the concepts described above into mainstream tech-
nology such as the Android platform. This is achieved by providing a middleware
that readily integrates with the Android platform (version 4.0 and up). In short,
the Android NFC API models RFID operations as file I/O, while MORENA
treats RFID operations as network communication. Additionally, MORENA
tackles the remaining drawbacks in the Android NFC API, namely manual data
conversion and the tight coupling of the API with the activity-based architecture.

In the next section, we describe the abstractions offered by MORENA for in-
teracting with RFID-tagged objects as if they where remotely connected software
objects which are automatically converted to the correct data format for reading
from and writing to RFID tags. Thereafter in Section 3, we descend one level
deeper into the MORENA middleware which allows the programmer to deal with
references to RFID tags directly and allows to encode custom encoding strate-
gies for Java objects. Subsequently, in Section 4 we discuss the application of
MORENA in a representative application. Section 5 discusses related work and
finally, Section 6, details future work on MORENA and concludes this paper.



MORENA: A Middleware for NFC-Enabled Android Applications 5

2 RFID-enabled Android Applications as Distributed
Object-Oriented Programs

As mentioned in the introduction, the main idea is to no longer treat RFID
communication as a form of I/O, but to come up with a suitable representation
for RFID tags such that they can be treated as first-class remote objects. A
second objective is to loosen the coupling with activity-based architecture of the
Android API.

MORENA offers two layers of abstraction. On the highest level, the pro-
grammer uses special Java objects called things which are causally connected to
a specific RFID tag and which can be automatically converted to the correct
data format to be read from or written to RFID tags. The lower level requires
the programmer to interact through a reference with the bare RFID tag, but
allows to come up with custom data conversion strategies (a good example is
storing specific fields of an object directly on the RFID tag while other fields are
stored in some external database). This section is about the highest level where
the programmer uses things.

2.1 Things

Consider an application where facilities offer guests access via their smartphones
or tablets to their WiFi access points by swiping over an RFID tag that contains
the credentials for connecting to the WiFi network. Using the things abstraction,
an object that is read from and written to RFID tags must be a thing. Consider
the WifiConfig class that allows us to create such things defined below.

public class WifiConfig extends Thing {
public String ssid_;
public String key_;

public WifiConfig(
ThingActivity<WifiConfig> activity,
String ssid,
String key) {

super(activity);
ssid_ = ssid;
key_ = key;

}

public boolean connect(WifiManager wm) {
// Connect to ssid_ with password key_

};
}

WifiConfig things are simple objects containing two fields, the SSID and pass-
word of a WiFi network. All fields that are not declared transient are serialized
when the thing is stored on an RFID tag. In this case, both fields are stored.
Serialization of things happens by converting Java objects to the JSON format



6 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

using Google’s own serialization library (GSON) built into the Android plat-
form. GSON performs deep serialization of all JSON-serializable fields, but does
not support cycles in the object graph to serialize.

Creating a thing requires passing the Android activity in its constructor, as
shown in the example. MORENA offers a dedicated activity called ThingActivity

which is parametrized with the type of things the activity is interacting with. In
this case, this is the WifiConfig thing type. Internally, such a ThingActivity

captures all low level Android events (such as the ones typically signaled by
means of intents) and triggers the correct actions on the associated thing ob-
jects. This frees the programmer from dealing with Android activities directly
for every single operation or event.

2.2 Initializing Things

In this section we discuss the initialization of empty RFID tags using things. On
the level of abstraction discussed in this section, the programmer can make use
of several callbacks that can be overridden on the ThingActivity. The one to
use for initializing things is the one overridden below.

@Override
public void whenDiscovered(EmptyRecord empty) {
empty.initialize(
myWifiThing,
new ThingSavedListener<WifiConfig>() {

@Override
public void signal(WifiConfig thing) {
toast("WiFi joiner created!");

}
},
new ThingSaveFailedListener() {

@Override
public void signal() {

toast("Creating WiFi joiner failed, try again.");
}

});
}

It is triggered each time an empty RFID tag is detected. It is triggered with
an EmptyRecord, which is a special thing object denoting an empty tag. Its
initialize method is used to initialize it with a thing object that at that mo-
ment in time is not bound yet to a particular RFID tag. Note that initializing a
thing involves writing data to the RFID tag to store the serialized thing in its
memory. Since this is an operation that may be long lasting (compared to other
computations) and since it may frequently fail, MORENA enforces that it hap-
pens asynchronously. For this, initialize takes in this case three arguments:
the thing to store on the empty tag, a listener object that will be invoked when
the thing is successfully initialized, and an object listener that will be invoked
when the operation fails given a default timeout. Various overloaded versions of



MORENA: A Middleware for NFC-Enabled Android Applications 7

initialize exist, such that for example the failure listener can be omitted or
the timeout value can be manually specified. We chose to expect two different
listener objects as opposed to a single listener object implementing two differ-
ent callbacks: one for success and one for failure. The reason is flexibility: these
tiny listener objects are usually created by directly implementing an interface,
while at the same time, in many cases different success listeners are needed while
only a single or handful failure listeners are required (or the other way around).
Separating them into separate first-class objects introduces more syntax, but
prevents code duplication in such situations.

2.3 Discovering and Reading Things

Just like the whenDiscovered callback for detecting empty RFID tags shown
above, there is an overloaded variant that can be used to detect things that are
already initialized. In our example application, it is overridden as follows:

@Override
public void whenDiscovered(WifiConfig wc) {
toast("Joining Wifi network " + wc.ssid_);
wc.connect();

}

This callback will be triggered every time an RFID is scanned which contains a
thing of type WifiConfig. Upon scanning, the data is deserialized and passed
as a WifiConfig argument to this callback.

For ease of programming, such a thing object like wc encapsulates a cached
version of this deserialized object which allows synchronous access to its fields
and methods. This is used in the example above to call the connect method
which connects the Android device to the WiFi network specified in the wc.

However, synchronous access is not without danger since other devices might
have concurrently updated the thing stored in the RFID tags memory. In this
case, no problem can occur because immediately after detecting the thing, the
connect method is called. For critical cases, the programmer must rely on the
asynchronous operations discussed in Section 3.

2.4 Saving Modified Things

The programmer is free to modify thing objects. However, this will render them
inconsistent with their serialized counterpart stored on the corresponding RFID
tag. To write through any changes performed on a thing to the tag memory,
the programmer must explicitly save the object. Since such a save operation
involves writing the serialized thing onto the tag, which is a long-lasting op-
eration that may frequently fail, MORENA enforces save operations to happen
asynchronously. The code snippet below shows how saving a modified thing hap-
pens.



8 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

myWifiConfig.ssid_ = "MyNewWifiName";
myWifiConfig.key_ = "MyNewWifiPassword";

myWifiConfig.saveAsync(
new ThingSavedListener<WifiConfig>() {

@Override
public void signal(WifiConfig wc) {

toast("WiFi joiner saved!");
}},

new ThingSaveFailedListener() {
@Override
public void signal() {

toast("Saving WiFi joiner failed, try again.");
}});

Analogous to thing initialization discussed earlier in Section 2.2, a success listener
and a failure listener can be supplied to be notified of a successful or failed save.
Again, various overloaded versions of the saveAsync method exist, depending
on which callbacks must be specified and whether the timeout value should be
different from the default one. Since we are dealing with NFC technology, which
only has a range of a few centimeters, we assume that race conditions are nigh
impossible if no exuberantly large timeout values are chosen by the programmer.
One of the future features of MORENA that we are investigating is providing
alternative protection mechanisms against such race conditions.

2.5 Broadcasting Things

Other than using a phone’s built-in NFC chip for reading and writing RFID
tags, the Android NFC API allows to use this same wireless communication
technology to exchange data in an ad hoc fashion between two phones in NFC
communication range. This technology is called Beam. The Beam API is largely
similar to the API for communication with RFID tags, which it means it suf-
fers from the same drawbacks, namely synchronous communication, coupling in
time, manual data conversion and a strong coupling with the activity-based ar-
chitecture. MORENA allows to easily exchange thing objects between phones
over an NFC connection using beam. In our example application, users can con-
nect other users to the WiFi network by bringing their phones close together
and broadcasting a WifiConfig thing. This happens as follows.

myWifiConfig.broadcast(
new ThingBroadcastSuccessListener<WifiConfig>() {

@Override
public void signal(WifiConfig wc) {

toast("WiFi joiner shared!");
}},

new ThingBroadcastFailedListener<WifiConfig>() {
@Override



MORENA: A Middleware for NFC-Enabled Android Applications 9

public void signal(WifiConfig wc) {
toast("Failed to share WiFi joiner, try again.");

}});

As one can see from the broadcast method used above, this is again an asyn-
chronous operation (as it may frequently fail), adhering to the interface used
before in this paper.

The reception of such a thing object using broadcast, causes the standard
whenDiscovered callback of the receiving ThingActivity to be invoked. Re-
member from our example application that upon reception it will connect the
Android device to the WiFi network stored on the tag. Things received via
broadcast will not be bound to a particular RFID tag (although they can later
be by initializing empty tags with them).

3 RFID-Tagged Objects by Reference

In this section, we descend a level of abstraction lower in the MORENA middle-
ware. It offers a reference abstraction to RFID-tagged objects instead of thing
objects to the programmer, which allows for asynchronous read and write oper-
ations with custom data conversion strategies. The thing abstractions are built
directly on top of this layer of abstraction. For the sake of brevity, we use a sim-
ple example application that allows to read and write strings onto RFID tags
supplied by the user.

3.1 Detecting RFID Tags

Detecting RFID tags already happens in an event-driven manner by activities in
the Android API. MORENA offers a TagDiscoverer class that captures these
events generated by a specific activity and uses them to generate tag reference
objects: the objects that represent remote references to RFID tags in MORENA.

Consider a simple Android application that simply shows plain text stored on
the last scanned RFID tag and allows the user to overwrite it with new content.
One could create a TagDiscoverer subclass as shown below.

private class MyTagDiscoverer extends TagDiscoverer {
@Override
public void onTagDetected(TagReference ref) {
readTagAndUpdateUI(reference);

}
@Override
public void onTagRedetected(TagReference ref) {
readTagAndUpdateUI(reference);

}
}

This subclass overrides two methods that can be used to track the connectivity of
an RFID tag: onTagDetected for a tag that has never been detected before, and



10 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

onTagRedetected for a tag that has already previously been detected. These
methods are called with a tag reference as sole argument, which can subsequently
be used to interact with the RFID tag (as explained below in Section 3.2).
In this simple application, the user interface showing the contents of the last
scanned tag is updated with the contents of the tag (the implementation of
readTagAndUpdateUI is shown in Section 3.2).

TagDiscoverers are instantiated by passing them the activity (of type
NFCActivity) that generates the RFID events and a MIME type that identifies
the type of data that the tag contains such that the correct intent is triggered by
the activity. Tags containing other types of data are disregarded. Typically, this
data type is defined per application, as shown below for our example application.

new MyTagDiscoverer(
this,
TEXT_TYPE,
new NdefMessageToStringConverter(),
new StringToNdefMessageConverter());

Additionally, TagDiscoverers are associated with two converter objects that
are responsible for converting objects for storage on RFID tags and data read
from an RFID tag back into the correct object. These converter objects are
explained later in Section 3.2. The idea is to encapsulate data conversion within
TagDiscoverers and the TagReferences they generate. This way, an
NFCActivity can easily use multiple tag references without worrying about
data conversion. Once a TagDiscoverer is instantiated, the programmer must
no longer worry about activities.

3.2 The Tag Reference Abstraction

Once a tag reference is obtained (either through a TagDiscoverer or by pa-
rameter passing), it offers a non-blocking event-driven API in its own right for
asynchronously reading from and writing data from the tag. Additionally, it
keeps a queue of buffered read and write operations that are still waiting to be
processed (for example because the RFID tag to which it points is temporarily
unavailable). Tag references encapsulate a private event loop that uses its own
thread of control to sequentially check if the first message in the queue can be
processed. If it fails, it just remains in the queue. If it succeeds, the registered
event listener on this asynchronous operation is triggered and the operation is
removed from the queue, after which the tag reference attempts to execute the
next scheduled operation. It is guaranteed that a message is never processed
before previously scheduled messages are processed first. If an operation times
out, it is removed from the queue as well and the next operation is attempted,
but this time the failure listener associated with the operation is triggered (if
there is one).

Listeners associated with these non-blocking tag reference operations are al-
ways asynchronously scheduled for execution in the activity’s main thread, which
frees the programmer of manual concurrency management. It also means that



MORENA: A Middleware for NFC-Enabled Android Applications 11

usually all statements after a tag reference operation in the code are executed
first before the listeners are executed. Synchronization of operations must hap-
pen by nesting these listeners.

Fig. 1. The tag reference abstraction.

The tag reference abstraction is depicted schematically in figure 1. In addition
to the bare Android tag object, it also encapsulates a cached version of the
contents of the RFID tag, which is updated after each read and write operation.
Although it provides synchronous access to these cached data, the programmer
must be aware that if a tag is not seen for some time, its contents might have
changed and an asynchronous read is a better option.

Within one Android activity, only a single unique tag reference can exist to
the same RFID tag. Behind the scenes, TagDiscoverer instances use a private
TagReferenceFactory that generates tag references for tags that are detected
for the very first time, and subsequently reuses these references when tags are
redetected and a reference to them is requested. It is however the programmer’s
responsibility to garbage collect unused tag references, as this is application
specific and usually driven by external events (as opposed to internal references).
For future versions of MORENA, we are investigating leasing strategies [9] that
allow the application to obtain a lease on an RFID tag for a limited amount of
time, after which it expires and the reference to the tag can be safely garbage
collected.

In the two subsequent sections, we describe the asynchronous interface offered
by the tag reference abstraction.

Reading RFID Tags Below is the implementation of the private method that
is called by the TagDiscoverer class of our simple example application.

private void readTagAndUpdateUI(TagReference ref) {
tagReference_ = ref;



12 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

ref.read(
new TagReadListener() {

@Override
public void signal(TagReference ref) {
handleTagRead(ref);

}},
new TagReadFailedListener() {

@Override
public void signal(TagReference ref) {

handleTagReadFailed();
}});

}

As we showed in Section 3.1, when a new tag is detected or a previously detected
tag is redetected, this method is called with the obtained tag reference. The tag
reference is used for asynchronously reading the tag. If this does not succeed
within a predefined timeout, an error is shown to the user. If it succeeds within
the predefined timeout, the user interface is updated with the cached data of the
tag reference.

Writing RFID Tags Writing tags using a tag reference happens in a similar
fashion. The listener shown below is triggered by our simple example application
when the user clicks the button that causes new text being inputted by the user
to be written to the last seen RFID tag.

private OnClickListener saveButtonListener =
new OnClickListener() {

public void onClick(View button) {
String toWrite = // Get text from EditText field
tagReference_.write(
toWrite,
new TagWrittenListener() {
@Override
public void signal(TagReference ref) {
handleTagRead(ref);

}},
new TagWriteFailedListener() {
@Override
public void signal(TagReference ref) {

handleTagWriteFailed();
}});

}
};

It just gets the data from a text field, which is afterwards automatically converted
to the appropriate format by the tag reference. This way, data conversion is
defined per tag reference and given such a tag reference, the programmer must
no longer worry about it.



MORENA: A Middleware for NFC-Enabled Android Applications 13

Just like for reading tags, we allow to register separate listener objects for
successful writes and failed writes. In the success listener, the user interface is
updated with the new cached data of the tag (which is the data that has been
physically written on it, otherwise this listener would not have been triggered).
In the failure listener, an error message is shown to the user.

Converting Objects for Storage on RFID Tags Converting objects for
storage on RFID tags and converting data read from RFID tags back to objects
happens on a per-tag reference and per-TagDiscoverer basis. This decouples
detection of tags and data conversion from the NFCActivity. Implementing
these converters requires some knowledge about the Android NFC API, namely
its implementation of the NDEF1 (NFC Data Exchange Format) standard [10].

The class shown below implements a converter for converting data read from
an RFID tag into a string for our example application.

private class NdefMessageToStringConverter
implements NdefMessageToObjectConverter {

@Override
public Object convert(NdefMessage ndefMessage) {
return new String(
(ndefMessage.getRecords()[0]).getPayload());

}
};

In our simple example application, tags contain just a single record containing
a string.

The class shown below implements the corresponding converter for converting
a string back to the NDEF format for storage on an RFID tag’s memory.

private class StringToNdefMessageConverter
implements ObjectToNdefMessageConverter {

@Override
public NdefMessage convert(Object o) {
String toConvert;
if (o == null) { toConvert = ""; }
else { toConvert = (String)o; }
NdefRecord r = new NdefRecord(
NdefRecord.TNF_MIME_MEDIA,
TEXT_TYPE,
new byte[0], // No id.
toConvert.getBytes(Charset.forName("UTF-8")));

return new NdefMessage(new NdefRecord[]{ r });
}

};

1 NDEF messages are in essence lists of byte arrays (NDEF records) in which the data
must be stored.



14 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

The details are not of great importance to this paper. It simply creates a byte
representation of the string in the correct charset and stores it in a single
NdefMessage object contained into a new NdefRecord. This record specifies
the type of tags on which TagDiscoverers filter.

3.3 Interaction with Other Phones Using Beam

Similar to interaction with RFID tags, we built an asynchronous, event-driven
API for exchanging beamed messages. Being notified of an asynchronously re-
ceived beam message happens by registering a BeamReceivedListener, such as
shown below.

new MyBeamListener(
this,
TEXT_TYPE,
new NdefMessageToStringConverter());

Just like a TagDiscoverer, its constructor takes an NFCActivity as first argu-
ment, the tag MIME type and a read converter. This allows that the
BeamReceivedListener autonomously converts received NDEF messages to ob-
jects without the programmer needing to worry about the activity which signals
the low-level events.

Below is the implementation of the subclass instantiated above.

private class MyBeamListener extends BeamReceivedListener {
@Override
public void onBeamReceived(Object o) {

// Set text of EditText field.
}

}

The programmer must override the onBeamReceived callback to react on a
received beam message. The data transported in the beam message is automat-
ically converted into an object using the read converter of the
BeamReceivedListener.

In contrast to the interaction with RFID tags, beaming does not happen by
means of a reference abstraction. The reason is that beaming is an undirected
operation that broadcasts a message to any device willing to accept the beamed
data. Instead, beaming messages to other phones happens using Beamer objects
that again encapsulate data conversion to decouple this from the activity. The
instantiation of the Beamer object used by our example application is shown
below. The first argument is the NFCActivity.

private Beamer beamer_ = new Beamer(
this,
new StringToNdefMessageConverter());

Just like for RFID operations, beaming messages must happen asynchronously,
using the beam method that is used below in the listener that is triggered when
the user clicks the beam button.



MORENA: A Middleware for NFC-Enabled Android Applications 15

private OnClickListener beamButtonListener =
new OnClickListener() {

public void onClick(View button) {
String toBeam = // Get text from EditText field
// Beaming is undirected.
beamer_.beam(
toBeam,
new BeamSuccessListener() {
@Override
public void signal() {

handleBeamSucceeded();
}},

new BeamFailedListener() {
@Override
public void signal() {
handleBeamFailed();

}});
}

};

When this button is clicked, the data to be beamed is retrieved from a text field
in the user interface and passed to the asynchronous beam operation. To detect
a successful beam operation, it takes a listener as second argument. To detect
if the beamed message times out, as a third argument it takes another listener.
These listeners are optional and are the only way to be notified of the state
of the asynchronous operation. It exhibits the same behavior as performing an
asynchronous write operation on an RFID tag.

Of particular importance is the fact that data conversions are now encapsu-
lated in TagDataConverter objects, which are associated with TagReference,
TagDiscoverer, Beamer and BeamReceivedListener objects. This means that
a single activity can use multiple TagDiscoverers generating different
TagReferences and different Beamers and BeamReceivedListeners all with
their separate data conversion strategies that are automatically applied when
exchanging data with RFID tags or using Beam.

3.4 Filtering Events

As discussed earlier in this section, the only way to distinguish between inter-
esting scanned tags or interesting received beam messages and non-interesting
ones, is to filter on the tag type (as is done by the TagDiscoverers and
BeamReceivedListeners). Since this is a rather coarse-grained way of filter-
ing, the programmer finds himself implementing filtering behavior manually and
scattered over the application code. This is why TagDiscoverers and
BeamReceivedListeners offer an additional method that can be optionally
overridden by the programmer.



16 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

For TagDiscoverers, this checkCondition method is a predicate that will
be applied on the tag reference generated or retrieved by the TagDiscoverer,
as shown below.

private class MyTagDiscoverer extends TagDiscoverer {
// ... Same as before ...
@Override
public boolean checkCondition(TagReference ref) {

// ... condition ...
}

}

A typical pattern is that the cached data of the tag reference is used to filter on.
For BeamReceivedListeners, a similar predicate can be applied on the ob-

ject received in the beam message, as shown below.

private class MyBeamListener extends BeamReceivedListener {
// ... Same as before ...
@Override
public boolean checkCondition(Object o) {
// ... condition ...

}
}

Only when these predicates are satisfied, the listeners are triggered.

4 Evaluation

In this section, we compare two versions of the WiFi sharing application used
as an example throughout this paper. The first version is based on the stan-
dard NFC API of the Android platform. The second is almost exactly the same
application2, but built on top of the MORENA middleware3. The focus of our
work is reducing the effort that is needed to develop an RFID-enabled Android
application. As a metric we chose to count the lines of code needed for imple-
menting particular RFID subproblems in the application. These subproblems are
(1) event handling (e.g. to be notified of detected tags), (2) data conver-
sion, (3) failure handling, (4) read/write functionality, and finally (5)
concurrency management (to prevent blocking the application on tag I/O).

Figure 2 shows two graphs comparing both implementations. The graph on
the left-hand side shows a comparison of the number of lines of code dedicated to
each subproblem. The total number of RFID-related lines of code for the hand-
crafted implementation is 197 and for the implementation based on MORENA
36 (a reduction by a factor 5).

The right-hand side shows the percentages that the RFID subproblems con-
stitute to the total count. We observe that MORENA shifts the focus to event
2 We will discuss the differences at the end of this section.
3 The source of these experiments and the MORENA middleware can be downloaded

at: http://soft.vub.ac.be/amop/research/rfid/morena/files



MORENA: A Middleware for NFC-Enabled Android Applications 17

Fig. 2. Comparison of handcrafted RFID code and MORENA code.

handling and frees the programmer of any concurrency management. This is
to be expected because MORENA’s asynchronous communication abstractions
take care of concurrency automatically at the expense of more event-driven code.

This leads us to a final note on this comparison. MORENA not only simplifies
dealing with RFID technology, it also holds another bonus over the handcrafted
implementation. Thanks to its asynchronous communication abstractions, op-
erations that fail due to tag disconnections are automatically retried, which is
not incorporated in the handcrafted version, in which the user must manually
reattempt the operation. Furthermore, in the MORENA version, multiple write
operations can be batched until a tag comes in range, while in the handcrafted
solution the user can only attempt to write as soon as a tag is in range. Imple-
menting the same behavior in the handcrafted version will further complicate
the implementation. In short, MORENA not only significantly reduces the com-
plexity of implementing RFID-enabled Android applications, but in comparison
to naively using the Android NFC API offers a better user experience as well.

5 Related Work

Typical application domains for RFID technology are asset management, prod-
uct tracking and supply chain management. In these domains RFID technology
is usually deployed using traditional RFID middleware, such as Aspire RFID
[11] and Oracle’s Java System RFID Software [12]. RFID middleware applies
filtering, formatting or logic to tag data captured by a reader such that the data
can be processed by a software application. Such traditional middleware uses a



18 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

setup where several RFID readers are embedded in the environment, controlled
by a single application agent. These systems rely on a backend database which
stores the information that can be indexed using the identifier stored on the
tags. They use this infrastructure to associate application-specific information
with the tags, although some of them allow to store information directly on the
tags, such as for example WinRFID.

WinRFID [13] is an RFID middleware that is entirely based on the .NET
Framework and Windows services, which are specified in XML. Services can read
from and write data onto RFID tags using an object-oriented abstraction. The
tag data is also specified in XML and is converted back and forth to a simplified
and compressed format when written onto tag memory. The main drawback
of WinRFID however is that the devices and/or services have to be explicitly
registered into a registry component, such that the services can contact this
registry to interact with for example RFID readers that were a-priori registered.

Fosstrak [14] (formerly named Accada) is an open source RFID middleware
platform that is based on the Electronic Product Code standards [15]. Fosstrak
offers a virtual tag memory service (VTMS) that similarly to our approach facil-
itates writing application-specific data to RFID tags asynchronously. However,
Fosstrak only supports writing key-value pairs.

In contrast to MORENA, the systems discussed above do not target mobile
applications running on for example smartphones. Still, in the literature one can
find interesting mobile applications making use of RFID, such as home care [16]
or the tracking of personal belongings [17]. This reinforces our idea that there is a
need for better programming abstractions in this domain. Conversely, MORENA
does not target industrial applications which have to deal with a massive amount
of RFID tags, and thus require greater scalability. We are currently investigating
how to carry over some of MORENA’s concepts into such a middleware.

An alternative distributed computing paradigm to the ambient-oriented pro-
gramming, on which MORENA is based, is distributed tuple spaces. In [18],
RFID tags are used to store application-specific data and form a distributed
tuple space that is dynamically constructed by all tuples stored on the tags that
are in reading range. Mobile applications interact by means of traditional tuple
space operations. However, there is no way to control on which specific tag tuples
will be stored.

6 Conclusion and Future Work

In this paper, we have presented MORENA, a middleware that aims at raising
the level of abstraction on which developers can build RFID-enabled Android
applications. We have evaluated the abstractions offered by MORENA by imple-
menting a mobile RFID-enabled application using the bare essentials provided
by the Android platform and comparing the implementation to an implementa-
tion based on MORENA. We observe that using MORENA significantly eases
the development of mobile RFID-enabled Android applications.



MORENA: A Middleware for NFC-Enabled Android Applications 19

The main feature that remains to be added in a future version of MORENA
is a leasing mechanism which has two goals. The first goal is to protect cached
thing objects from data races when other RFID-enabled devices are able to write
new data on their corresponding RFID tags. The second goal is to allow cached
objects to be garbage collected automatically. The mechanism that we envision is
to write a locking timestamp and a device ID on the RFID tag’s memory by the
device willing to interact with the tag. Only if this succeeds, the device is granted
exclusive access. The timestamp dictates for how long the device has exclusive
access to the memory of the tag. Beyond this timestamp, the lease expires and
the device looses its exclusive access, unlocking the tag for interaction with other
devices. The assumption made here is that the clock drift among Android devices
is small enough to exclude practically all race conditions.

To summarize, the abstractions offered by the MORENA middleware make
developing mobile RFID-enabled Android applications easier as follows:

Automatic conversion of thing objects. MORENA’s thing objects can be
used as regular Java objects, but can in addition be seamlessly read from or
written to RFID tags.

Tracking of connectivity. MORENA offers an event-driven interface such that
an application can be notified if a particular RFID tag is in or out of com-
munication range.

First-class references to RFID tags. In MORENA, RFID tags are uniquely
linked to tag references or thing objects.

Asynchronous communication and decoupling in time. MORENA offers
asynchronous and fault-tolerant operations for reading or writing the RFID
tags’ memories, reducing the case analysis for the programmer and freeing
the programmer from manual concurrency management to keep the appli-
cation responsive.

Looser coupling from the activity-based architecture. MORENA encap-
sulates the low-level NFC API which is tightly coupled to Android activities
into thing objects, tag references or other higher level abstractions such that
applications become less coupled to the user interface.

Support for Beam. Just like reading and writing things to and from RFID
tags, using the same abstractions, things can be broadcasted to other phones
using NFC.

References

1. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

2. G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as
building blocks for the internet of things,” IEEE Internet Computing, vol. 14,
pp. 44–51, 2010.

3. S. Komatineni, D. MacLean, S. Y. Hashimi, S. Komatineni, D. MacLean, and
S. Y. Hashimi, “Introducing the android computing platform,” in Pro Android 3,
pp. 1–20, Apress, 2011.



20 Andoni Lombide Carreton, Kevin Pinte, and Wolfgang De Meuter

4. R. Handa, K. Maheshwari, and M. Saraf, Google Wallet - A Glimpse Into the
Future of Mobile Payments. GRIN Verlag GmbH, 2011.

5. J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter,
“Ambient-oriented Programming in Ambienttalk,” in Proceedings of the 20th Eu-
ropean Conference on Object-oriented Programming (ECOOP) (D. Thomas, ed.),
vol. 4067 of Lecture Notes in Computer Science, pp. 230–254, Springer, 2006.

6. A. Lombide Carreton, K. Pinte, and W. De Meuter, “Software abstractions for
mobile rfid-enabled applications,” Software: Practice and Experience, 2011.

7. T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter,
“Ambienttalk: object-oriented event-driven programming in mobile ad hoc net-
works,” in XXVI International Conference of the Chilean Computer Science Soci-
ety, pp. 3–12, IEEE Computer Society, 2007.

8. M. Miller, E. D. Tribble, and J. Shapiro, “Concurrency among strangers: Program-
ming in E as plan coordination,” in Symposium on Trustworthy Global Computing,
vol. 3705 of LNCS, pp. 195–229, Springer, April 2005.

9. C. Gray and D. Cheriton, “Leases: an efficient fault-tolerant mechanism for dis-
tributed file cache consistency,” in SOSP ’89: Proceedings of the twelfth ACM sym-
posium on Operating systems principles, (New York, NY, USA), pp. 202–210, ACM
Press, 1989.

10. G. Madlmayr, J. Ecker, J. Langer, and J. Scharinger, “Near field communication:
State of standardization,” in Proceedings of the International Conference on the
Internet of Things 2008 (F. Michahelles, ed.), vol. 1 of 1, p. 6, ETH Zürich, ETH
Zürich, 03 2008.

11. N. Kefalakis, N. Leontiadis, J. Soldatos, K. Gama, and D. Donsez, “Supply chain
management and NFC picking demonstrations using the AspireRfid middleware
platform,” in ACM/IFIP/USENIX Middleware ’08, (New York, NY, USA), pp. 66–
69, ACM, 2008.

12. Oracle (Sun Developer Network), “Developing auto-id solutions using sun java
system rfid software.”

13. B. S. Prabhu, X. Su, H. Ramamurthy, C.-C. Chu, and R. Gadh, “Winrfid – a mid-
dleware for the enablement of radio frequency identification (rfid) based applica-
tions,” white paper, UCLA – Wireless Internet for the Mobile Internet Consortium,
January 2008.

14. C. Floerkemeier, C. Roduner, and M. Lampe, “Rfid application development with
the accada middleware platform,” IEEE Systems Journal, Special Issue on RFID
Technology, vol. 1, pp. 82–94, Dec. 2007.

15. EPCGlobal Standards Overview, “http://www.epcglobalinc.org/standards,”
September 2010.

16. J. Sidén, V. Skerved, J. Gao, S. Forsström, H.-E. Nilsson, T. Kanter, and M. Gul-
liksson, “Home care with nfc sensors and a smart phone,” in Proceedings of the 4th
International Symposium on Applied Sciences in Biomedical and Communication
Technologies, ISABEL ’11, (New York, NY, USA), pp. 150:1–150:5, ACM, 2011.

17. M. K. Watfa, M. Kaur, and R. F. Daruwala, “Ipurse: An innovative rfid applica-
tion,” in Advances in Education and Management (M. Zhou, ed.), vol. 211 of Com-
munications in Computer and Information Science, pp. 531–538, Springer Berlin
Heidelberg, 2011.

18. M. Mamei, R. Quaglieri, and F. Zambonelli, “Making tuple spaces physical with
rfid tags,” in Symposium on Applied computing, (New York, NY, USA), pp. 434–
439, ACM, 2006.


