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Abstract. The dynamic nature and common use of agents and agent
paradigm motives the investigation on standardization of multi-agent
systems (MAS). The main property of a MAS is to allow the sub-
problems related to a constraint satisfaction issues to be subcontracted to
different problem solving agents with their own interests and goals, being
FIPA one of the most commonly collection of standards used nowadays.
When dealing with a huge set of agents for real time applications, such as
games and virtual reality solutions, it is hard to compute a massive crowd
of agents due the computational restrictions in CPU. With the advent of
parallel GPU architectures and the possibility to run general algorithms
inside it, it became possible to model such massive applications. In this
work we propose a novel standardization of agent applications based on
FIPA using GPU architectures, making possible the modelling of more
complex crowd behaviours. The obtained results in our simulations were
very promising and show that GPUs may be a choice for massively agents
applications. We also present restrictions and cases where GPU based
agents may not be a good choice.

1 Introduction

A multi-agent system — MAS — has the interesting property to allow modeling
subdivisions of the constraint satisfaction problem to individual and different
agents specifications, with their own interests and goals. Furthermore, domains
with multiple agents of any type, including autonomous vehicles [6] and human-
agents massively used in game development, are generally solved with this ap-
proach.

The dynamic nature of agent distribution motivates research by groups work-
ing on the standardization of dynamic collaborative MAS. Mendez [5] describes
each model of MAS proposed by these groups, and concludes that “The archi-
tecture models open environments composed of logically distributed areas where
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agents exist. The basic agents in this architecture are minimal agents, local area
coordinators, yellow page servers, and cooperation domain servers”. One of these
models, used in this work, is Foundation for Intelligent Physical Agents (FIPA).

The main concept of a MAS is to simulate real world environments and in-
teractions, composed by many entities, e.g. a building full of people during an
emergency evacuation, a bee community, biological interactions between cells or
enzymes, and so on. In applications such as games and simulation, the creation of
many individuals with different behaviors and/or objectives became widespread.
There are several approaches that explore this dynamic property [17,12,18,15],
but when dealing with video-games and interactive applications, there are many
computational restrictions that must be carefully analysed, since their computa-
tion can be expensive. Most of previous work explore the hardware limitations to
create bigger crowds [16,2]. Others explore some of the problems related to the
simulation itself just like collisions [7], Path-Planning [29], many behaviors [22]
and so on. The biggest problem is that a crowd simulation leads to a huge
amount of computing data, and it is hard to make it real time. Researches like
[10] explore a different hardware models to improve its results and create many
agents as possible.

Since 2006, the use of graphics processing units paradigm (GPUs) became
not only a new research area, but it is being used inside many applications
and operational systems to escape from performances bottlenecks. When GPUs
became cheaper and fully programmable, many researchers are exploring this
power in order to create more agents with improved behaviours, according to
its limitations [3,24]. However, mapping agent behaviors to GPU architectures
is not trivial, given the GPU restrictions and the complexity of Artificial Intel-
ligence algorithms. Many heuristics of this field try to avoid O(n2) complexity
using different and complex structures and decision trees. Although these AI
algorithms gives good results to a single number of agents, hardly they achieve
a good scalability [25].

Unlike other researches, we believe that a standardization of this process
of creating agents in GPU architectures is necessary not only to improve the
actual implementations, but also to make easier to game developers. This work
is a continuation of previous work [19,20] where it has been exposed a mapping
process using a wide spread framework to program FIPA agents called JADE [1]
to GPU Computing.

The purpose of this work is to present a novel and efficient architecture
to autonomous agents using GPU Computing paradigm. We describe how a
MAS is usually implemented following the FIPA model, and we develop a new
paradigm to implement a MAS in GPU Computing based architectures. We also
present a case study where we show how to map a typical MAS problem to GPU
Computing based architecture.

This paper is organized as follows: Section 2 presents FIPA patterns and gives
an overall about its usage and implications. Section 3 shows the architecture we
are proposing, and gives a study case. Section 4 analyses the implementation
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and performance results. Finally, Section 5 concludes this work and describes
future work.

2 FIPA

Agents can be based on two different architectures: logic- and reactive-based [5].
The former is based on knowledge systems, in which the programmer has to
represent the complete environment and create rules to manipulate the agent
according to reasoning mechanisms. The latter is generally based in a decision-
making behavior. Unlike the logic-based method, the reactive doesn’t need a
reasoning system, but only the modeling of a communication with the environ-
ment data, in order to receive some sort of information, and acting according to
the observed data.

FIPA stands for Foundation For Intelligent Physical Agents [4] and it is a
non-profit organization, which develops patterns to create applications using
agent-based approaches. This organization, founded in 1996, is composed from
both academic and industry members since its creation. These agent-based ap-
proaches are widely used by academic and industrial computing solutions. Other
patters such as MASIF( Mobile Agent System Interoperability Facility )[9], are
used to specific applications, and are not so generic as FIPA.

During the evolution of FIPA, two main concepts has being developed: the
FIPA-ACL (for communications purposes) and the Agent Management Frame-
work. FIPA-ACL is the communication standard among agents based on the 90’s
internet patterns such as OMG, DCE W3C and GGF. The Agent Management
Framework focus on how to create, operate and manipulate the agents. It defines
the creation, registration, location, communication and operation process of the
agents. In this paper, our efforts lies on the management of these agents.

FIPA stands that there is an abstract layer where all the agents have services
provided to them and the programmer could develop application on the top layer
of this architecture. On the other hand, all the agents are autonomous, they act
like a peer-to-peer application and there must be a top application that controls
their execution called Container. The container has an Agent Description of the
agents inside it and has the authority to start the agents and control the agent’s
environment. This paradigm is called Agent Oriented Programming — AOP.
Figure 1 shows at a top level the architecture of a system implemented accord-
ing to AOP approach. There are many frameworks, platforms and applications
based on AOP approach, such as JADE [1], FLUX [23] and JACK [28]. Nowa-
days, its use is as variable as possible, for instance: “robots” that search pieces
of information in websites, media-oriented services[8] , evacuation and massive
people simulations [26], and so on.



4

3 A GPU based architecture for massive FIPA based
agents

In this work we propose a novel FIPA based architecture using AOP paradigm
for a massively concurrent agents application. As discussed in introduction, map-
ping an agent-based architecture to a SIMD paradigm, on which GPU is based,
is not trivial and new structures must be proposed and developed. To test how
works our general architecture, we implemented a simple agent system that
behaviors based on a traditional A∗ path-finding algorithm, described in Sub-
section 3.3. Our objective in our experiments is analyze how scalable are the
problems implemented using AOP paradigm on GPU architecture. So, due to
lack of performance on GPU when processes execution demands high volume of
communication, we avoided data communication among the agents. Results and
tests using our proposed architecture to implement our MAS with the chosen
agent behavior are presented and discussed in Section 4.

3.1 The GPU FIPA Architecture

Since FIPA is an Agent Oriented programming pattern, the main actor we have
in our architecture is the agent. A simple agent life cycle in this architecture is
illustrated in Algorithm 1.

Algoritm 1 Life Cycle of a Generic Agent
Require: Evironment: Agent’s world.
Require: State: Agent’s Initial State.
1: Load all initial variables;
2: while ( Agent’s conditions to stop are not valid) do
3: Execute Agent’s Behavior;
4: Interact with the Environment;
5: Change Agent’s State;
6: end while

The main controller of the agents is called a Container. It is possible to have
one or more containers in an application and different types of agents within
this container. One or more containers can also share the same environment.
Generally, there is a Main Container to control all the other containers.

In the model we follow the agent is not directly implemented, but it has many
descriptions that help the controller of these agents to know how to stop them
and maintain its autonomy. Figure 1 shows how the role of both container and
agent description during the execution and the relationship between them.

Each agent description dictates how the agent must be executed and what are
the conditions to make the agent stop. This has to be implemented on the func-
tions action and done respectively. In a CPU implementation these descriptions
are inside the agents description, different from the GPU, that we need to put
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Fig. 1. Top Level Agent Oriented Programming Architecture

these in a separated file that goes there because of GPU compiler restrictions,
as shown in Figure 2.

Fig. 2. Description of how a kernel is linked to the solution and called

3.2 Kernel Structure

In a typical CPU approach the agent live along all the cycle, with the agent
description for convenience. Another possible approach is to create a Behavior
class that maps the agent’s algorithm and improve the liability of the code. Since
every agent has an autonomous execution and the GPU architecture follows a
SIMD paradigm, it is necessary that each agent has the knowledge of his own
code and data. Each agent is mapped to CUDA as threads, but not all agent’s
data will be processed inside the kernel, as shown in Figure 2, where method
setup from AgentDescriptor class calls the kernel method in «kernel.cu». Methods
action and done are called only inside the kernel («kernel.cu»).

Since the number of agents is variable, the kernel algorithm needs to be
suitable to many different configurations. GPUs restrict the number of threads
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and blocks to be power of 2. For instance, if there are 1000 agents inside a
simulation, there will be 1024 threads divided in blocks. In Algorithm 2 we see
how this is done. If an agent has a Unique ID (UID) greater than the maximum
number of agents, this agent will be idle. Since every agent is mapped into a
thread, the UID can be easily achieved by a simple arithmetic using descriptors
of the dimension of the block, ID of the block and ID of the thread.

Algoritm 2 Kernel
Require: World: Agent’s world.
Require: State: Initial Position of the Agent.
Require: NumberofAgents: Max number of agents used.
1: UID = (BlockIndex×BlockID) + ThreadID;
2: if (UID < NumberofAgents) then
3: while (Agent’s not in final position) do
4: State = NextState(State, World);
5: end while
6: end if

To calculate the number of threads and blocks used, we use the following
equations:

NT = 2

⌈
log (NA)

log 2

⌉
(1)

NB =
NT

NW
(2)

NTpB =
NT

NB
(3)

where:

NA is the number of agents in a simulation;
NT is the real number of threads that is going to be executed;
NB is the number of blocks created;
NW is the number of threads in a warp3. It is given by the GPU specification;
NTpB is the number of threads per block. The total amount of threads is given

by NB ×NT pB.

These equations minimize the number of warps, improves the scalability and
calculates the blocks and threads in power of 2. If the number of blocks or the
number of threads per blocks is higher than the maximum of the GPU we relax
the second equation and allows more warps per blocks.

3 Each thread is executed by a single core, and each block of threads in a Stream
Multiprocessor(SM), which consist of array of cores. Warp is each subset of threads
running in parallel in each block. The programmer does not have control of these
warps swaps, being completely scheduled by the GPU itself.
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Using an heterogeneous programming paradigm, the Agent Descriptor has to
configure and call a kernel one or more times, depending on the solution provided.
When GPU is used, the Descriptor also makes the memory copies from CPU to
GPU and vice versa. It has also to make the kernel configuration and the GPU
deallocation. The agent behavior will be incorporated by the kernel itself and
will be specific for each kind of actions. In our platform we develop a pathfinding
agent, typically found in many crowd behavior games.

4 Test Case — Pathfinding Agents

The A∗ algorithm [13] is a search algorithm that uses a minimum cost heuristic
and dynamic programming techniques. Different from other GPU implementa-
tions of this algorithm [3,27], we used the traditional heuristic of A∗, defined
by Equation 4, where g(n) evaluates the sum of costs from the beginning node
to the node n, and h(n) is the distance between the node n and the objective
node. We based our implementation on [11]. Algorithm 2 shows how is the kernel
implementation. Not that if on line 3 restricts the number of agents inside the
kernel, as explained in Section 3.2.

f(n) = g(n) + h(n) (4)

A∗’s complexity: In best case, A∗’s complexity is O(N), where the algorithm
finds the path directly to the objective node, where N is the number of nodes
between the base node and the objective node. On worst case the algorithm
is O(bN ), where b is a partition factor. The complexity of A∗ depends directly
of the heuristic function used, tending to be exponential if the function is too
precise [21]. The average complexity is O(N exp (Cφ(N))), where φ(N) =
log(N)k [14].

For simplicity, this test case has no obstacles and the agents are located into a
two dimension map. The class diagram shown in Figure 3 shows the structure of
an oriented object implementation of an agent description on the CPU. Figure 4
illustrates the class diagram of an agent description that uses a GPU to process
part of its information. The kernel is placed in a separated file as a library, and
executes the behavior of an agent. All the other settings are in myAgent class,
that is triggered by the setup function. Note that Figure 4 shows how our GPU
FIPA Architecture is used to model a MAS.
Performance Analysis: We want to verify the scalability of the application:
the execution times maintain when we change the number of agents? We used
an Intel Core i7 3.07GHz and 8GB DDR3 memory for the CPU, and a GeForce
GTX 580 with 512 CUDA cores, 1544MHz for each core and 1536MB GDDR5
memory for the GPU tests. All the test case scenarios (Test Scn.) in Table 1
were performed 10 times in a CentOS 6 operational system. The map has a
fixed 1000×1000 dimension4. Note that the columns NA (number of agents in a
4 This size of map is considered a large one.
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Fig. 3. Basic Class Diagram using the CPU

simulation), NB (number of blocks created) and NTpB (number of threads per
block) are used for GPU configuration calculated by Equations 1, 2 and 3.

Test Number NA NB NTpB

T0 100 1 1
T1 101 1 16
T2 102 4 32
T3 103 32 32
T4 104 512 32
T5 105 1024 128
T6 106 1024 1024

Table 1. Test Scenarios performed

Table 2 shows the mean and standard deviation of the 10 times measured
on executions. We can observe that, as the number of agents grows (T1 to T6),
the GPU maintains the scalability, loosing time only when the number of warps
grows. However, these still are good times for a realtime simulation. On the
other hand, the CPU times increase linearly as the number of agents grows. To
a better perception of the time increase on GPU implementation, Figure 5 shows
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Fig. 4. Basic Class Diagram for the Agent Pathfiding on GPU

the evolution of the time execution when increasing the number of agents. It is
possible to see that there are perceptual changes when more warps per blocks
are required, specially from 105 to 106 agents.

Restrictions of the Architecture: The proposed architecture follows some of
the agent management patterns defined by FIPA and can be easily reproduced
and adapted by some modifications. Though, there is still many restrictions im-
plemented in our architecture regarding to implement heterogeneous agents with
heterogeneous behaviors and agent communications. These restrictions exist due
to the SIMD paradigm of the GPU, where is not recommended to create differ-
ent branches inside one kernel just to solve these problems. One good solution
could be multiple kernel calls, but nowadays we do not have control of how
much of the GPU capacity will be allocated to each concurrent kernel. So it is
hard to distribute the kernel calls correctly and smoothly. For this reason, our
solution is focused for programmers that want to create FIPA agents with few
communication and few heterogeneity among them. Another good point of it is
to reproduce innumerable problems with the same pattern, only changing a few
lines, increasing the productivity and the liability of the code, which is a big
issue when dealing with game engines.
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Test CPU GPU
Number Mean Time(s) Standard Deviation(s) Mean Time(s) Standard Deviation(s)

T0 0,000027 0,000004 0,102781 0,001090
T1 0,000240 0,000005 0,103334 0,000914
T2 0,002377 0,000006 0,104765 0,003214
T3 0,024976 0,000911 0,105510 0,004830
T4 0,235692 0,000077 0,107930 0,008282
T5 2,360808 0,003434 0,108138 0,005976
T6 23,562007 0,000502 0,119523 0,001940

Table 2. Algorithms performance on both CPU and GPU

Fig. 5. Test Scenarios Results Chart

5 Conclusion and Future Work

Agent oriented paradigm has been largely used in game development, but almost
all approaches implement them in a CPU architecture. While CPU’s approaches
allows generic and complex agent behavior solutions, it is shown that a huge
amount of agents may be impracticable for interative frame rates. In this paper
we present a novel and efficient multi-agent architecture for a GPU programming
paradigm, allowing up to two orders of magnitudes of agents in interative frame
rates.

In the future, this works aims to determinate how to use GPU computing
inside AOP paradigm. With the evolution of this work, we intend to create an
abstraction layer to turn possible to create agents directly in GPU. This aims to
facilitate the developer to not have to learn GPU’s architecture, increasing the
productivity process in applications that require massive use of agents.
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We believe that along with the development of the GPU Computing, the
restrictions in creating agents that we’ve shown will sightly decrease during the
time. However, its scalability and massiveness nature will be maintained. For
future work we intend to evolve the standardization of this architecture solving
some of the restrictions we’ve found, such as communications and execution of
heterogeneous agents in a more complex environment. We also intend to accept in
our architecture more behaviors to agents, with the possibility to explore kernel
capabilities of the GPU. This functionality will allow to different behaviors be
treated in parallel.
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