Interactive Music Recommendation System for Adapting Personal Affection: IMRAPA

Abstract : We have so various types of entertainment, and music is one of the most popular one. In this paper, we proposed music recommendation system that interactively adapts a user’s personal affection with only a simple operation, in which both acoustic and meta features are used. The more a user uses the proposed system, the better the system adapts the user’s personal affection and recommends the suitable songs. Through the evaluational experiment, we confirmed that the proposed system could recommend songs adapting user’s personal affection even if the personal affection variated.
Type de document :
Communication dans un congrès
Gerhard Goos; Juris Hartmanis; Jan van Leeuwen. 11th International Confernece on Entertainment Computing (ICEC), Sep 2012, Bremen, Germany. Springer, Lecture Notes in Computer Science, LNCS-7522, pp.417-420, 2012, Entertainment Computing - ICEC 2012. 〈10.1007/978-3-642-33542-6_42〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01556186
Contributeur : Hal Ifip <>
Soumis le : mardi 4 juillet 2017 - 17:03:12
Dernière modification le : mardi 4 juillet 2017 - 17:35:46
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 01:59:08

Fichier

978-3-642-33542-6_42_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Keigo Tada, Ryosuke Yamanishi, Shohei Kato. Interactive Music Recommendation System for Adapting Personal Affection: IMRAPA. Gerhard Goos; Juris Hartmanis; Jan van Leeuwen. 11th International Confernece on Entertainment Computing (ICEC), Sep 2012, Bremen, Germany. Springer, Lecture Notes in Computer Science, LNCS-7522, pp.417-420, 2012, Entertainment Computing - ICEC 2012. 〈10.1007/978-3-642-33542-6_42〉. 〈hal-01556186〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

18