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Abstract

The global sensitivity analysis of a numerical model aims to quantify, by means

of sensitivity indices estimate, the contributions of each uncertain input variable

to the model output uncertainty. The so-called Sobol’ indices, which are based

on the functional variance analysis, present a difficult interpretation in the pres-

ence of statistical dependence between inputs. The Shapley effect was recently

introduced to overcome this problem as they allocate the mutual contribution

(due to correlation and interaction) of a group of inputs to each individual in-

put within the group. In this paper, using several new analytical results, we

study the effects of linear correlation between some Gaussian input variables on

Shapley effects, and compare these effects to classical first-order and total Sobol’

indices. This illustrates the interest, in terms of sensitivity analysis setting and

interpretation, of the Shapley effects in the case of dependent inputs. We also

investigate the numerical convergence of the estimated Shapley effects. For the

practical issue of computationally demanding computer models, we show that

the substitution of the original model by a metamodel (here, kriging) makes it

possible to estimate these indices with precision at a reasonable computational

cost.
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1. Introduction

When constructing and using numerical models simulating physical phe-

nomena, global sensitivity analysis (SA) methods are valuable tools [1, 2, 3, 4].

These methods allow one to determine which model input variables contribute

the most to the variability of the model outputs, or on the contrary which are

not important and possibly which variables interact with each other. The stan-

dard quantitative methods compute the variance-based sensitivity measures also

called Sobol’ indices. In the simple framework of d scalar inputs, denoted by

X = (X1, . . . , Xd)
T ∈ Rd (where T stands for the transpose operator) and a

single scalar output Y ∈ R, the model response is

Y = f(X) . (1)

In the case of independent inputs, the interpretation of the Sobol’ indices is

simple because the variance decomposition of Y is unique [5]. For instance, the

first-order Sobol’ index of Xi, denoted Si, represents the amount of the output

variance solely due to Xi. The second-order Sobol’ index (Sij) expresses the

contribution of the interactions of the pairs of variables Xi and Xj , and so on

for the higher orders. As the sum of all Sobol’ indices is equal to one, the indices

are interpreted as proportions of explained variance.

However, in many applications, it is common that the input variables have a

statistical dependence structure imposed by a probabilistic dependence function

[6] (e.g., a copula function) or by physical constraints upon the input or the

output space [7, 8, 9]. As shown in previous studies, estimating and interpreting

Sobol’ indices with correlated inputs are not trivial [10, 11]. Many propositions

appear in the literature that are not always easy to interpret. One strategy

proposed by [12] is to evaluate the Sobol’ indices of subsets of inputs which

are correlated within the subsets but not correlated without. However, this
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approach is not satisfactory because one may need to compute the Sobol’ indices

of the individual variables.

In [13] the authors proposed to decompose each partial variance Vi due to

input Xi, and defined as Var(E[Y |Xi]), into partial variance (V U
i ) due to the

uncorrelated variations of input Xi and partial variance (V C
i ) due to the cor-

related variations of Xi with all other inputs Xj , j 6= i. Such an approach

allows to exhibit inputs that have an impact on the output only through their

strong correlation with other inputs. However, their approach only applies to

linear model output with linearly dependent inputs. In the same spirit, the

authors in [14] proposed a strategy which support non-linear models and non-

linear dependencies. Their methodology is decomposed in two steps: a first step

of decorrelation of the inputs and then a second step based on the concept of

High Dimensional Model Representation (HDMR). HDMR (see, e.g., [15]) re-

lies on a hierarchy of component functions of increasing dimensions. The second

step in [14] thus consists in performing the HDMR on the decorrelated inputs.

At the same time, the authors in [16] proposed a non-parametric procedure

to estimate first-order and total indices in the presence of dependencies, not

necessarily of linear type. Their methodology requires knowledge of the con-

ditional probability density functions and the ability to draw random samples

from those. Later, in [17], the authors established a link between the approaches

in [16] and [14], allowing the distinction between the independent contributions

of inputs to the response variance and their mutual dependent contributions,

via the estimation of four sensitivity indices for each input, namely full and

independent first-order indices, and full and independent total indices. They

proposed two sampling strategies for dependent continuous inputs. The first

one is based on the Rosenblatt transform [18]. The second one is a simpler

method that estimates the sensitivity indices without requiring the knowledge

of conditional probability density functions, and which can be applied in case

the inputs dependence structure is defined by a rank correlation matrix (see,

e.g., [19]).

A different approach was introduced in [20]. It is once again based on the
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HDMR. The component functions are approximated by expansions in terms of

some suitable basis functions (e.g., polynomials [21], splines . . . ). This meta-

modeling approach allows a covariance decomposition of the response variance.

In [22], the output variance is decomposed into orders of partial variance contri-

butions, while the second order and higher orders of partial variance contribu-

tions are decomposed into uncorrelated interaction contributions and correlated

contributions.

It is worth noting that none of these works has given an univoque definition

of the functional ANOVA for correlated inputs as the one provided by Hoeffding-

Sobol’ decomposition [23, 5] when inputs are independent. A generalization of

the Hoeffding-Sobol’ decomposition was proposed in Stone [24] (see also Hooker

[25]). Then, in [26], the authors defined a new variable importance measure

based on the decomposition of Stone. However, such an important measure suf-

fers from two conceptual problems underlined in [27]: the sensitivity indices can

be negative and the approach places strong restrictions on the joint probability

distribution of the inputs.

As a different approach, [28, 29] initiated the construction of novel gener-

alized moment-free sensitivity indices, called δ-importance measures. Based on

some geometrical considerations, these indices measure the shift area between

the outcome probability density function and this same density conditioned to

an input. Thanks to the properties of these new indices, a methodology is avail-

able to obtain them analytically through test cases. In [9] an application of

these sensitivity measures on a gas transmission model with dependent inputs

is proposed. We note that the authors in [30] have proposed a methodology to

evaluate the δ-importance measures by employing the decorrelation procedure

described in [14].

The Shapley values [31], well known in game theory and economics, have

been proposed by [32] in the framework of SA of model outputs. In its variance-

based form, the Shapley value (also called Shapley effect) has been discussed

in [33, 27, 34]. SA based on Shapley effect does not rely on the Hoeffding-

Sobol’ decomposition to carry out a SA in the case where the model entries
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exhibit dependencies among them. SA based on Shapley effects does not rely

anymore on the Hoeffding-Sobol’ decomposition, it rather consists in a direct

allocation of a part of the variance of the output at each input. Then, the two

main properties and advantages of the Shapley values are that they cannot be

negative and they sum-up to the total output variance. The allocation rule is

based on an equitable principle. For example, an interaction effect is equally

apportioned to each input involved in the interaction. From the conceptual point

of view, the major issue is to understand what is the effect of the dependence

between inputs on the variance-based Shapley values.

Several test-cases where the variance-based Shapley values can be analyti-

cally computed have been presented in [27]. This study has highlighted several

properties of these indices (e.g., for d ≥ 2, if there is a bijection between any two

of the Xj , j = 1, . . . , d, then those two variables have the same Shapley value).

Moreover, [27] gives their general analytical form in the case of Gaussian inputs

X and a linear function f(X) = β0 + βTX (with β ∈ Rd). However, from the

analytical result (given in Section 3.1), it is difficult to understand the effects of

the input correlation structure onto the variance-based Shapley values. There-

fore, in this paper, we provide a thorough investigation of several particular

cases, sufficiently simple to provide some interpretation.

For the sake of practical applications, [33] has proposed two estimation algo-

rithms of the Shapley effects (that we define as the normalized variance-based

Shapley values), and illustrated them on two application cases. By using analyt-

ical solutions of Shapley effects on several particular test functions, we perform

in the present work a numerical convergence study in which the theoretical and

estimated Shapley effects are compared. As for the Sobol’ indices, one important

issue in practice is the numerical cost in terms of number of model evaluations

required to estimate the Shapley effects. To alleviate the computational burden,

a classical solution is to use a metamodel which is a mathematical approxima-

tion of the numerical model (1) from an initial and limited set of runs [35, 36].

The metamodel solution is a current engineering practice for estimating sensi-

tivity indices [37]. We investigate the use of metamodeling for estimating the
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Shapley effects in practice.

In the following section, we recall the general mathematical formulation of

Sobol’ indices and Shapley effects when the inputs are dependent. We also

provide a discussion of the SA setting [10] that can be addressed with the

Shapley effects. In Section 3, we develop the analytical formulas that one can

obtain in several particular cases: linear models with Gaussian inputs in various

dimensions, block-additive structure, Ishigami model with various dependencies

between the three inputs. In particular, we focus on inequalities that can be

developed between Sobol’ indices and Shapley effects. Numerical algorithms

for estimating Shapley effects are studied in Section 4. Section 5 presents an

industrial application which requires the use of a metamodel to estimate the

sensitivity indices. A conclusion synthesizes the findings and contributions of

this work.

2. General formulation of sensitivity indices

2.1. Sobol’ indices

Starting from the model (1) Y = f(X), the Sobol’ index associated with a

set of inputs indexed by u (u ⊆ {1, . . . , d}) is defined by:

Sclo
u = Var(E[Y |Xu])/Var(Y ) . (2)

Sobol’ indices have been introduced in [5]. Indices defined by (2) are referred as

closed Sobol’ indices in the literature (see, e.g., [38]) and are always comprised

between 0 and 1. For the mathematical developments of the following sections,

we denote the numerator of Sclo
u as:

τ2u = Var(E[Y |Xu]) . (3)

In addition to the Sobol’ indices in Eq. (2), total sensitivity indices have

also been defined in order to express the “total” sensitivity of the variance of Y

to an input variable Xi [39]:

STi
=

EX−i(VarXi [Y |X−i])
Var(Y )

, (4)
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where X−i is the vector (X1, . . . , Xd) not containing Xi and with the variables

over which the conditional operators are applied indicated in subscript.

Recall that this paper is not restricted to independent inputs, so that the

knowledge of first-order and total Sobol’ indices does not give complete infor-

mation on the way an input Xi influences the output Y . In [17], the authors

propose a strategy based on the estimation of four sensitivity indices per input,

namely S(i), ST(i)
, Sind

(i) and Sind
T(i)

. We note that S(i) = Si and Sind
T(i)

= STi
are the

classical Sobol’ indices, while ST(i)
and Sind

(i) are new ones that can be expressed

by means of Rosenblatt transform [18]. These indices can also be derived from

the law of total variance as discussed in [40].

The indices S(i) and ST(i)
include the effects of the dependence of Xi with

other inputs, and are referred to as full sensitivity indices in [14]. The indices

Sind
(i) and Sind

T(i)
measure the effect of an input Xi, that is not due to its de-

pendence with other variables X−i. Such indices have also been introduced as

uncorrelated effects in [14] and further discussed in [17] which refers to them

as the independent Sobol’ indices. In [17], the authors propose to estimate the

four indices S(i), ST(i)
, Sind

(i) and Sind
T(i)

for the full set of inputs (i = 1, . . . , d).

Note that Sind
(i) ≤ Sind

T(i)
= STi

and that Si = S(i) ≤ ST(i)
, but other inequalities

are not known.

In the following, we focus our attention on the full first-order Sobol’ indices

S(i) and the independent total Sobol’ indices Sind
T(i)

. Indeed, these are the in-

dices which are used in the definition of the Shapley effects (see Section 2.2).

Moreover, the full first-order indices S(i) coincide with the associated classical

first-order Sobol’ indices Si, and the independent total indices Sind
T(i)

coincide

with the associated classical total Sobol’ indices STi .

2.2. Shapley effects

As an alternative to the Sobol’ indices, the Shapley effects Shi are defined

as

Shi =
∑

u⊆−{i}

(d− |u| − 1)!|u|!
d!

[c(u ∪ {i})− c(u)] , (5)
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where c(·) is a cost function, −{i} is the set of indices {1, . . . , d} not containing

i and |u| is the cardinality of u. The Shapley values [31], well known in game

theory and by economists, have been proposed by [32] in the framework of SA

of model outputs. In this paper, we consider the Shapley value defined by

c(u) = Sclo
u = Var(E[Y |Xu])/Var(Y ) . (6)

The corresponding Shapley values are new importance measures for SA of model

output and are called Shapley effects by the authors in [33]. These authors

also prove that it is equivalent to define c(·) as E[Var(Y |X−u)]/Var(Y ) or as

Var(E[Y |Xu])/Var(Y ). Note that, in [32] and [33], the cost function is not

normalized by the variance of Y while, in the present paper, we consider its

normalized version.

The Shapley effect relies on an equitable allocation of part of the variance of

the output to each input. Indeed, the Shapley effect equitably shares interaction

effects of a subset of inputs with each individual input within the subset. More-

over, the Shapley effect associated with input factor Xi (i ∈ {1, . . . , d}) takes

into account both interactions and correlations of Xi with Xj , 1 ≤ j ≤ d, j 6= i.

The share allocation has a consequence that Shapley effects are non negative

and sum-up to one, allowing an easy interpretation for ranking input factors.

Formulas (5-6) show that the Shapley effect of an input is a by-product of

its Sobol’ indices. Thus, if one can compute the complete set of Sobol’ indices,

we can compute the Shapley effect of each input. Note that both algorithms

proposed in [33] are based on consistent estimators of the Shapley effects. From

the exact permutation algorithm, we can extract a consistent estimator of any

Sobol’ index. Concerning the random permutation algorithm, the sample size

Ni related to the inner loop (conditional variance estimation), and the one No

related to the outer loop (expectation estimation) are fixed to NI = 3 and

No = 1 respectively. Thus it is not possible to extract from that algorithm

accurate estimates of Sobol’ indices. However, this last algorithm is consistent

for the estimation of Shapley effects and is particularly adapted in the case of

high-dimensional inputs space (see Section 4.1 for more details).
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In case the input factors are independent, first-order (resp. total) Sobol’

indices provide effectively computable lower- (resp. upper-) bounds for the

Shapley effects. In the following, as in [33], we will show that these bounds do

not hold anymore in case the input factors present some dependencies.

2.3. SA settings

[10] and [41] have defined several objectives, called SA settings, that sensi-

tivity indices can address. These SA settings aims at clarifying the objectives

of the analysis. They are listed in [41] as follows:

• Factors Prioritization (FP) Setting, to know on which inputs the reduction

of uncertainty leads to the largest reduction of the output uncertainty;

• Factors Fixing (FF) Setting, to determine which inputs can be fixed at

given values without any loss of information in the model output;

• Variance Cutting (VC) Setting, to know which inputs have to be fixed to

obtain a target value on the output variance;

• Factors mapping (FM) Setting, to determine which inputs are most re-

sponsible for producing values of the output in a specific region of interest.

In the case of independent inputs, the Sobol’ indices directly address the FP,

FF and VC Settings (see [41]). In the case of dependent inputs, the classical

ANOVA-Sobol’ decomposition does not hold anymore and the VC setting cannot

be directly obtained with Sobol’ indices (see [10]). However, the FP Setting can

be achieved using the independent and full first order Sobol’ indices. The FF

Setting is more difficult to address in the presence of dependencies. Indeed,

fixing one or more of the input factors, has an impact on all the input factors

that are correlated with them. However, as explained in [17], independent and

full total Sobol’ indices can help understanding the FF Setting in the dependent

framework.

It is of interest now to give some hints about how modelers can use the

Shapley effects to address some SA settings. The VC Setting is not achieved, in
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the independent and dependent inputs cases, because the Shapley effect of an

input contains some effects due to other inputs.

In the case of independent inputs, each Shapley effect Shi is bounded by the

corresponding first-order Si = S(i) and total indices STi
= Sind

T(i)
:

Si ≤ Shi ≤ STi . (7)

In addition to the individual effect of the variable Xi, the Shapley effects take

into account the effects of interactions by distributing them equally in the in-

dex of each input that plays in the interaction [32]. Therefore, the FF Setting

is achieved by using the Shapley effects. However, the FP Setting is not pre-

cisely achieved because we cannot distinguish the contributions of the main and

interaction effects in a Shapley effect.

In the case of dependent inputs, Eq. (7) does not hold true anymore. How-

ever, due to the equitable principle on which the allocation rule is based, a

Shapley effect close to zero means that the input has no significant contribution

to the variance of the output, neither by its interactions nor by its dependencies

with other inputs. Therefore, the FF Setting can be addressed with Shi.

3. Relations and inequalities between Sobol’ indices and Shapley ef-

fects

As said before, in the case of dependent inputs, no relation such as the one

in Eq. (7) can be directly deduced. The goal of this section is to study par-

ticular cases where analytical deduction can be made. The linear model is the

first model to be studied in sensitivity analysis because of its simplicity, its in-

terpretability, and the tractable analytical results provided for Gaussian inputs.

Considering two and three inputs allow comparing our new results to previous

studies on Sobol’ indices. The Ishigami function is the most used analytical

test function in sensitivity analysis. It has been considered in numerous papers

dealing with Sobol’ indices with dependent inputs.

We focus the analysis on the full first-order indices (corresponding to classical

first-order Sobol’ indices) Si = S(i) (called “First-order Sobol” in the figures)
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and the independent total indices (corresponding to classical total Sobol’ in-

dices) STi
= Sind

T(i)
(called “Ind total Sobol” in the figures). Indeed these are the

indices mainly studied and discussed in the previous works on this subject, in

particular in [16]. The numerical tests of [16] have inspired the ones proposed

in this section. Moreover, these indices are easily and directly provided by the

Shapley effects estimation algorithms ([33], see Section 4), during the first and

last iterations of the algorithm. Finally, the estimation of the independent first-

order Sobol’ S(i) and of the full total Sobol’ indices ST(i)
is based on a rather

cumbersome process, based on the use of d Rosenblatt transforms (see more de-

tails in Section 2.1). Comparisons with these complementary indices are made

in [42].

3.1. Linear model with Gaussian input variables

Let us consider

Y = β0 + βTX (8)

with X ∼ N (µ,Σ) and Σ ∈ Rd×d a positive-definite matrix. We have σ2 =

Var(Y ) = βT
{1,...,d}Σ{1,...,d},{1,...,d}β{1,...,d}. Note that the subscripts are added

on β (resp. Σ) in order to precise which components are contained in the vector

(resp. matrix).

We get from [27]:

Shi =
1

d

∑
u⊆−i

(
d− 1

|u|

)−1 Cov
(
Xi,X

T
−uβ−u |Xu

)2
σ2 Var(Xi |Xu)

. (9)

Recall now the following classical formula:

Var(X |X−j) = Σ{1,...,d},−jΣ
−1
−j,−jΣ−j,{1,...,d} . (10)

From (10) and according to the law of total variance, we easily obtain the Sobol’

indices:

Sj =
Var(E[β0 + βTX|Xj ])

σ2
= 1− E(Var[βTX|Xj ])

σ2

=
βT
{1,...,d}

(
Σ{1,...,d},{1,...,d} −Σ{1,...,d},jΣ

−1
j,jΣj,{1,...,d}

)
β{1,...,d}

σ2
, (11)
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STj =
E(Var[β0 + βTX|X−j ])

σ2
=

E(Var[βTX|X−j ])
σ2

=
βT
{1,...,d}Σ{1,...,d},−jΣ

−1
−j,−jΣ−j,{1,...,d}β{1,...,d}

σ2
· (12)

Note that β0 and µ do not play any role as translation parameters in

variance-based sensitivity analysis. However, no general conclusion can be

drawn from Eqs. (9-12). Therefore, particular cases are studied in the three

following sections.

3.2. Linear model with two Gaussian inputs

Let us consider the case d = 2 with

µ =

µ1

µ2

 , β =

β1
β2

 and Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , −1 ≤ ρ ≤ 1 , σ1 > 0 , σ2 > 0 .

We have σ2 = Var(Y ) = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2 . From Eq. (3), τ2u =

Var(E[Y |Xu]) (u ⊆ {1, 2}) and we obtain τ2∅ = 0, τ21 = (β1σ1 + ρβ2σ2)2,

τ22 = (β2σ2 + ρβ1σ1)2 and τ212 = σ2. The definition of the Shapley effect (Eq.

(5)) gives (j = 1, 2)

σ2Shj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(τ2u+{j} − τ

2
u), (13)

from which we get

σ2Sh1 = β2
1σ

2
1(1− ρ2

2
) + ρβ1β2σ1σ2 + β2

2σ
2
2

ρ2

2
,

σ2Sh2 = β2
2σ

2
2(1− ρ2

2
) + ρβ1β2σ1σ2 + β2

1σ
2
1

ρ2

2
.

(14)

From Eq. (11-12), we have

σ2 S1 = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + ρ2β2

2σ
2
2 ,

σ2 S2 = β2
2σ

2
2 + 2ρβ1β2σ1σ2 + ρ2β2

1σ
2
1 .

(15)

and

σ2ST1
= β2

1σ
2
1(1− ρ2) ,

σ2ST2 = β2
2σ

2
2(1− ρ2) .

(16)
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From Equations (14), (15) and (16) we can infer that the following four

assertions are equivalent

Shj ≤ STj
,

Sj ≤ Shj ,

ρ

(
ρ
β2
1σ

2
1 + β2

2σ
2
2

2
+ β1β2σ1σ2

)
≤ 0 ,

|ρ| ≤ 2|β1β2|σ1σ2
β2
1σ

2
1 + β2

2σ
2
2

.

(17)

The equality of the first three assertions is obtained in the absence of correlation

(ρ = 0). In that case, the Shapley effects are equal to the first-order and total

Sobol’ indices. In the presence of correlation, the Shapley effects lie between

the full first-order indices and the independent total indices: with either Sj ≤

Shj ≤ STj or STj ≤ Shj ≤ Sj . We call this the sandwich effect. We remark

that the effects of correlations on the independent total indices (e.g. −ρ2β2
1σ

2
1

for X1) and on the full first-order indices (e.g. 2ρβ1β2σ1σ2 +ρ2β2
2σ

2
2 for X1) are

allocated half to the Shapley effect, in addition to the elementary effect (e.g.

β2
1σ

2
1 for X1).

These results are also illustrated in Figure 1. In Figure 1 (a), as the stan-

dard deviations of each variable are equal, the different sensitivity indices are

superimposed and the Shapley effects are constant. In Figure 1 (b), because

X2 is more uncertain than X1, its sensitivity indices are logically larger than

those of X1. The effect of the dependence between the inputs is clearly shared

on each input variable. The dependence between the two inputs lead to a re-

balancing of their corresponding Shapley effects, while a full Sobol’ index of an

input comprises the effect of another input on which it is dependent. We also see

on Figure 1 (b) that the Shapley effects of two perfectly correlated variables are

equal. Finally, the sandwich effect is respected for each input: From Eq (17),

we can prove that Sj ≤ Shj ≤ STj
when ρ ∈ [−0.8; 0] and that Sj > Shj > STj

elsewhere.
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Figure 1: Sensitivity indices on the linear model (β1 = 1, β2 = 1) with two Gaussian inputs.

(a): (σ1, σ2) = (1, 1). (b): (σ1, σ2) = (1, 2).

3.3. Correlated input non included in the model

Consider the model Y = f(X1, X2) = X1 with (X1, X2) two dependent

standard Gaussian variables with a correlation coefficient ρ. It corresponds to

the case β1 = 1, β2 = 0, µ1 = µ2 = 0, σ2
1 = σ2

2 = 1 in the model introduced in

Section 3.2. The Shapley effects are

Sh1 = 1− ρ2

2
and Sh2 =

ρ2

2
. (18)

Eq. (18) leads to the important remark that an input not involved in the

numerical model can have a non-zero effect if it is correlated with an influential

input of the model. If the two inputs are perfectly correlated, their Shapley

effects are equal. This example also illustrates the FF setting that can be

achieved with the Shapley effects: if ρ is close to zero, Sh2 is small and X2 can

be fixed without changing the output variance.

For the Sobol’ indices, we have

S1 = 1 , ST1
= 1− ρ2 and S2 = ρ2 , ST2

= 0 , (19)

which indicates that X2 is only important because of its strong correlation with

X1 (FP setting) and that by only accounting for the uncertainty in X1, one

should be able to evaluate the uncertainty of Y accurately.
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3.4. Linear model with three Gaussian inputs

We consider a linear model with β = (β1, β2, β3)T and X = (X1, X2, X3)T

being a Gaussian random vector X ∼ N (µ,Σ) with µ = (0, 0, 0)T. We assume

that X1 is independent from both X2 and X3, and that X2 and X3 may be

correlated. The covariance matrix reads:

Σ =


σ2
1 0 0

0 σ2
2 ρσ2σ3

0 ρσ2σ3 σ2
3

 , −1 ≤ ρ ≤ 1 .

We obtained the following analytical results.

σ2 = Var[f(X)] =

3∑
j=1

β2
jσ

2
j + 2 ρ β2β3σ2σ3 ,

Sh1 = (β2
1σ

2
1)/σ2 ,

Sh2 = [β2
2σ

2
2 + ρ β2β3σ2σ3 +

ρ2

2
(β2

3σ
2
3 − β2

2σ
2
2)]/σ2 ,

Sh3 = [β2
3σ

2
3 + ρ β2β3σ2σ3 +

ρ2

2
(β2

2σ
2
2 − β2

3σ
2
3)]/σ2 ,

(20)

As expected, we have
∑3
j=1 Shj = 1 and we see in Sh2 and Sh3 how the corre-

lation effect is distributed in each index. In the case of fully correlated variables

(i.e. ρ = ±1), we obtain Sh2 = Sh3 =
(
β2
2σ

2
2 + β2

3σ
2
3 + 2ρ β2β3σ2σ3

)
/
(
2σ2
)
.

We study the particular case β1 = β2 = β3 = 1, σ1 = σ2 = 1 and σ3 = 2, for

which in [16], the authors provide the formulas of full first-order and independent

total Sobol’ indices. The analytical indices are depicted on Figure 2 as a function

of the correlation coefficient ρ. The Shapley effects are equal to the Sobol’ indices

in the absence of correlation, and then lie between the associated full first-order

and independent total indices in the presence of correlation. The sandwich

effect is respected. The effect of an increasing correlation (in absolute value)

can be interpreted as an attractive effect both for the full Sobol’ indices (here

the first-order one) and the Shapley effect. However, for the Shapley effects,

the contribution of the correlation is shared with each correlated variable. This

leads to the increase of one Shapley effect and the decrease of the other. The

Shapley effects allow an easy understanding of the influential inputs even when

15



the Sobol’ indices are not (when Si > STi). As before, we see that the Shapley

effects of two perfectly correlated variables are equal.
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Figure 2: Sensitivity indices on the linear model with three Gaussian inputs.

3.5. Linear model with an interaction and three Gaussian inputs

In the previous Sections, we have analytical results for which the Shapley

effects were bounded by the full first-order and independent total indices. In

the present section, we show that it is not always the case. Let us define the

model

Y = X1 +X2X3 (21)

with

X =


X1

X2

X3

 ∼ N3




0

0

0

 ,Σ

 and Σ =


σ2
1 0 ρσ1σ3

0 σ2
2 0

ρσ1σ3 0 σ2
3

 , −1 ≤ ρ ≤ 1 .

It can be proven that σ2S1 = σ2
1 and σ2ST1

= σ2−
(
σ2
2σ

2
3 + ρ2σ2

1

)
= (1−ρ2)σ2

1 .

Recall that

σ2Sh1 =
1

3

(
τ21 − τ2∅ +

1

2

(
τ212 − τ22 + τ213 − τ23

)
+ σ2 − τ223

)
.
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We thus get

σ2Sh1 = σ2
1(1− ρ2

2
) +

σ2
2σ

2
3

6
ρ2 . (22)

A straightforward computation yields

ST1
≤ Sh1 ≤ S1 .

We also get S2 = 0, σ2 ST2
= σ2

2σ
2
3 and σ2Sh2 =

σ2
2σ

2
3

6 (3 + ρ2). Thus

S2 ≤ Sh2 ≤ ST2
.

Concerning the third input variable X3, one gets σ2S3 = ρ2σ2
1 , σ2ST3

=

(1−ρ2)σ2
2σ

2
3 and σ2Sh3 =

ρ2σ2
1

2 +
σ2
2σ

2
3

6 (3−2ρ2). Thus the two following assertions

are equivalent:

S3 ≤ Sh3 ≤ ST3 ,

ρ2σ2
1 ≤

σ2
2σ

2
3

3
(3− 4ρ2) .

The two following assertions are also equivalent:

ST3 ≤
φ3
σ2
≤ S3 ,

ρ2σ2
1 ≥

σ2
2σ

2
3

3
(3− 2ρ2) .

It also happens that Sh3 is not comprised between S3 and ST3
. The two follow-

ing assertions are equivalent:

Sh3 ≥ max (S3, ST3
) ,

3

7
≤ ρ2 ≤ 3

5
.

Figure 3 illustrates the previous findings about the Sobol’ indices and the

Shapley effects for this model. As expected, when the correlation coefficient ρ

belongs to two intervals, [−0.775;−0.655] and [0.655; 0.775], the Shapley effects

of X3 are larger than the full first-order Sobol’ indices and the independent total

Sobol’ indices.

17
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Figure 3: Sensitivity indices on the linear model with three Gaussian inputs and an interaction

between X2 and X3.

3.6. Three dimensional model with a block-additive structure

We consider the following model:

Y = g(X1, X2) + h(X3) , (23)

which is called a “block-additive” structure. We consider the general case where

the vector (X1, X2, X3)T is not restricted to a Gaussian vector. We only assume

that the three inputs have finite variances and that X3 is independent from

(X1, X2). From the independence properties one has:

σ2 = τ212 + τ23 , τ213 = τ21 + τ23 and τ223 = τ22 + τ23 . (24)

From Equations (2), (4), (5) and (24) we get:

S3 = Sh3 = ST3
.

We also get that, for j = 1, 2, the three following assertions are equivalent

Sj ≤ Shj ,

18



Shj ≤ STj ,

τ21 + τ22
2

≤ τ212
2
.

We now consider, as in [16], the Ishigami function, a non-linear model in-

volving interaction effects which writes:

f(X) = sin(X1) + 7 sin(X2)2 + 0.1X4
3 sin(X1) (25)

where Xi ∼ U [−π, π] ∀i = 1, 2, 3 with a non-zero correlation ρ between a pair

of variables.

Our study considers correlations between X1 and X3 only, X2 being inde-

pendent of X1 and X3. This model has a block-additive structure (as in Eq.

(23) up to a permutation between X2 and X3). The sensitivity measures de-

picted in Figure 4 were obtained with a numerical procedure explained in the

next section. We observe that the sandwich effect is respected for X1 and X3.

As X2 is independent from the group (X1, X3) and it has no interaction with

that group, the Shapley index of X2 equals both its full first-order and inde-

pendent total indices. These results confirm the general results discussed above

for such a block-additive structure. Moreover, the Shapley effects of X1 and X3

get closer as the correlation between them increases.

4. Numerical estimation issues

4.1. Estimation by direct sampling

For the sake of completeness, the authors in [33] propose two algorithms for

estimating the Shapley effects from formula (5) with

c(u) =
E(Var[Y |Xu])

Var(Y )
(26)

being the cost function (which has been shown to be more efficient than the

variance of the conditional expectation). The first algorithm traverses all pos-

sible permutations between the inputs and is called the “Exact permutation

19
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Figure 4: Sensitivity indices on the Ishigami function. Exact permutation method with No =

2 × 104, Ni = 3, Nv = 104.

method”. The second algorithm consists of randomly sampling some permuta-

tions of the inputs and is called the “Random permutation method”. The latter

is to be preferred when the overall permutations is too large to be performed.

For each iteration of the inputs’ permutations loop, a conditional variance

expectation must be computed. The cost C, in terms of model evaluations, of

these algorithms are then the following [33]:

1. Exact permutation method: C = NiN
exa
o d!(d − 1) + Nv, with Ni the

inner loop size (conditional variance) in (26), N exa
o the outer loop size

(expectation) in (26) and Nv the sample size for the variance computation

(denominator in (26));

2. Random permutation method: C = NiN
rand
o m(d − 1) + Nv, with m the

number of random permutations for discretizing the principal sum in (5),

Ni the inner loop size, N rand
o the outer loop size and Nv the sample size

for the variance computation.

The (d−1) terms that appear in the computational cost come from the fact that

20



(d − 1) Shapley effects are estimated while the last Shapley effect is estimated

by using the sum-to-one property. Note that the full first-order Sobol’ indices

(Eq. (2)) and the independent total Sobol’ indices (Eq. (4)) are also estimated

by applying these algorithms.

From theoretical arguments, the authors in [33] have shown that the near-

optimal values of the sizes of the different loops are the following:

• Ni = 3 and N exa
o as large as possible for the exact permutation method,

• Ni = 3, N rand
o = 1 and m as large as possible for the random permutation

method.

We consider these values in all our numerical tests and applications. The value

of m which leads to the same numerical cost for the two algorithms is:

m = N exa
o d! . (27)

In practical applications, this choice is not realistic and the random permutation

method is applied with a much smaller value for m (see Section 5). The exact

permutation algorithm with fixed Ni is consistent as N exa
o tends to infinity. The

random permutation one with fixed Ni and N rand
o is consistent as the number of

sampled permutations, m, tends to infinity. Indeed, both algorithms are based

on unbiased estimators of Var(Y ) and Shi × Var(Y ), whose variance tends to

zero (see Appendix A, Equations (18) and (22) in [33] for more details). From

Theorem 3 in [33], we know that the variance of the estimator of Shi obtained

from the random permutation algorithm is bounded by (Var(Y ))
2
/m. More

intuitively, it seems reasonable to think that the difficulty to estimate Shi is

related on the effective dimension of the model as well as on the complexity of

the dependence structure of the inputs.

To illustrate these numerical estimators, we consider the linear model with

3 Gaussian inputs of Section 3.4 with β1 = β2 = β3 = 1, σ1 = σ2 = 1, σ3 = 2.

We first set ρ = 0.9. On Figure 5 (a) (resp. (b)) are plotted the results of the

exact permutation method (resp. random permutation method) versus N exa
o

(resp. m). For the random permutation method, the error bars were obtained
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from the central limit theorem on the permutation loop (Monte Carlo sample

of size m) and then by taking two times the standard deviation of the estimates

(95% confidence intervals). Similarly, for the exact permutation method, the

error bars were obtained from the central limit theorem on the outer loop (Monte

Carlo sample of size N exa
o ). In the both cases, we observe the convergence of the

estimated values toward the exact values as N exa
o (reps. m) increases. Further

analysis about the choice of m, N exa
o , N rand

o and Ni is nevertheless necessary.
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Figure 5: Numerical estimates by the exact permutation method (a) and the random permu-

tation method (b) of the Shapley effects on the linear model.

While varying ρ between −1 and 1, Figure 6 shows the Shapley effects and

the Sobol’ indices estimated by the two methods (with the same cost by using

Eq. (27) with d = 3 and Nv = 104 for both algorithms). We recall that

the theoretical results have been obtained in Section 3.4. First, we note that

the numerical results and the theoretical values (see Figure 2) are in a good

agreement. Second, we can observe that the accuracy of the two methods are

equivalent for this low dimensional problem (d = 3).

4.2. Metamodel-based estimation

In this section, we consider a relatively common case in industrial appli-

cations where the numerical code is expensive in computational time. As a
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Figure 6: Numerical estimation of sensitivity indices on the linear model. Left: exact per-

mutation method (No = 5 × 103, Ni = 3, Nv = 104). Right: random permutation method

(m = 3 × 104, No = 1, Ni = 3, Nv = 104).

consequence, it cannot be evaluated intensively (e.g. only several hundred cal-

culations are possible). It is therefore not possible to estimate the sensitivity

indices with direct use of the model. Indeed, the Monte Carlo estimates of

Sobol’ indices require for each input several hundreds or thousands of model

evaluations [4, 38]. For the Shapley effects, an additional loop is required which

increases the computational burden.

In this case, it is recommended to use a metamodel instead of the original

numerical model in the estimation procedure. A metamodel is an approxima-

tion of the numerical model, built on a learning dataset [35]. The appeal to

a metamodel is a current engineering practice for estimating sensitivity indices

[37]. In the present work, we use the Gaussian process metamodel (also called

kriging) [43, 44] which has demonstrated in many practical situations to have

good predictive capacities (see [45] for example). The Gaussian process model

is defined as follows:

Y (X) = h(X) + Z(X), (28)

where h(·) is a deterministic trend function (typically a multiple linear model)

and Z(·) is a centered Gaussian process. The practical implementation details
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of kriging can be found in [46]. We make the assumption that Z is second-

order stationary with a Matérn 5/2 covariance parameterized by the vector of

its correlation lengths θ ∈ Rd and variance σ2. The hyperparameters σ2 and

θ are classically estimated by the maximum likelihood method on a learning

sample comprising input/output of a limited number of simulations. Kriging

provides an estimator of Y (X) which is called the kriging predictor denoted by

Ŷ (X). To quantify the predictive capability of the metamodel and to validate

the predictor, the metamodel predictivity coefficient Q2 is estimated by cross-

validation or on a test sample [45]. More precisely, the Gaussian process model

gives the following predictive distribution:

∀X? ,
(
Y (X?) | yN

)
∼ N

(
Ŷ (X?), σ̂2

Y (X?)
)

(29)

where X? is a point of the input space not contained in the learning sample,

yN is the output vector of the learning sample of size N and σ̂2
Y (X) is the

kriging variance that can also be explicitly estimated. In particular, the kriging

variance σ̂2
Y (X) quantifies the uncertainty induced by estimating Y (X) with

Ŷ (X).

As an illustration, we study the Ishigami function (Eq. (25)) with a correla-

tion coefficient ρ between X1 and X3, on which [16] studied the Sobol’ indices

(see also Section 3.6 of this paper). When constructing the models, three dif-

ferent sizes N of the learning sample (50, 100 and 200) respectively give three

predictive coefficients (Q2 which is equivalent to the R2 in prediction) differ-

ent for the kriging predictor: 0.78, 0.88 and 0.98. Figure 7 shows that with

a strong predictive metamodel (Q2 = 0.98 with N = 200), the estimations of

the Shapley effects by the metamodel are satisfactorily accurate. The precision

of the estimated effects deteriorate rapidly with the decrease of the metamodel

predictivity.

This example has just illustrated the need to have a sufficiently accurate

metamodel in order to have precise estimates of Shapley effects. Controlling

the error made on the Shapley effects estimates due to the metamodel approxi-

mation is possible thanks to the properties of the Gaussian process model. To
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Figure 7: Sensitivity indices on the Ishigami function estimated by 3 metamodels built on 3

different learning databases. The exact permutation method (with No = 2 × 103, Ni = 3,

Nv = 104) is applied on the metamodel predictor.

provide such confidence bounds on Shapley effects estimates, [42] has developed

an algorithm based on conditional Gaussian process simulations (as in [47] for

Sobol’ indices).

5. Industrial application

This application concerns a probabilistic analysis of an ultrasonic non-destructive

control of a weld containing manufacturing defect. Complex phenomena occur

in such heterogeneous medium during the ultrasonic wave propagation and a

fine analysis to understand the effect of uncertain parameters is important.

The simulation of these phenomena is performed via the finite element code

ATHENA2D, developed by EDF (Electricité de France). This code is dedicated

to the simulation of elastic wave propagation in heterogeneous and anisotropic

materials like welds.

A first study [48] has been realized with an inspection configuration aiming
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to detect a manufactured volumic defect located in a 40 mm thick V grooveweld

made of 316L steel (Figure 8). The weld material reveals a heterogeneous and

anisotropic structure. It was represented by a simplified model consisting of a

partition of 7 equivalent homogeneous regions with a specific grain orientation.

Eleven scalar input variables (4 elastic coefficients and 7 orientations of the

columnar grains of the weld inspections) have been considered as uncertain and

modeled by independent random variables, each one associated to a probability

density function. The scalar output variable of the model is the amplitude of

the defect echoes resulting from an ultrasonic inspection (maximum value on

a so-called Bscan). Uncertainty and sensitivity analysis (based on polynomial

chaos expansion [37]) have then been applied from 6000 Monte Carlo simula-

tions of ATHENA2D in [48]. The sensitivity analysis has shown that almost all

inputs are influential (only one input has a total Sobol’ index smaller than 5%),

that the interaction effects are non-negligible (approximately 30% of the total

variance) and that the orientations play a major role for explaining the ampli-

tude variability. The analysis confirms that an accurate determination of the

micro-structure is essential in these simulation studies. Finally, as a perspective

of their work, the authors in [48] explain that the real configuration has been

strongly simplified by considering independent input random variables. Indeed,

due to the welding physical process, a dependence structure exists between the

orientations, in particular between two neighboring domains (see Figure 8 right).

Figure 8: Metallographic picture (left), description of the weld in 7 homogeneous domains

(middle) and inspection configuration (right). From [48].

The purpose of the present study is then to perform a sensitivity analysis by
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using a more realistic probabilistic model for the input random variables. Our

SA setting is mainly a FF objective (see Section 2.3): Which parameters can

be fixed without impacting the predicted model response uncertainty? Indeed,

these SA results are expected to be useful with regards to the qualification

process of the non-destructive control technique. As explained in Section 2.3,

the Shapley effects are well adapted to FF setting in the case of dependent

inputs.

In our study, the probability distributions of all the inputs are considered

Gaussian, with the same mean and standard deviation as in [48]. From physical

models of welding process and solidification [49], engineers have been able to esti-

mate the following correlation matrix between the 7 orientations (Or1, . . . , Or7)

of Figure 8 (right),

Σ =



1 0.80 0.74 0.69 0.31 0.23 0.20

0.80 1 0.64 0.53 0.59 0.51 0.46

0.74 0.64 1 0.25 0.60 0.57 0.54

0.69 0.53 0.25 1 −0.25 −0.35 −0.33

0.31 0.59 0.60 −0.25 1 0.96 0.84

0.23 0.51 0.57 −0.35 0.96 1 0.95

0.20 0.46 0.54 −0.33 0.84 0.95 1


. (30)

As only several hundreds of numerical simulations of ATHENA2D can be

performed in the schedule time of the present study, our strategy consists of

generating a space filling design in order to have a “good” learning sample for

a metamodel building process. A Sobol’ sequence of N = 500 points has then

been generated for the d = 11 input variables on [0, 1]d. After transformation

of this sample to a sample of inputs which follow their physical scales and their

joint probability density function, the corresponding 500 runs of ATHENA2D

have been computed.

Remark: The 6000 Monte Carlo simulations performed in the previous study

[48] were not stored, and thus could not be reused. As already mentioned,

the metamodel built in that previous study was based on polynomial chaos
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expansion, and was not stored as well.

From the resulting N -size learning sample, a Gaussian process metamodel

(parameterized as explained in Section 4.2) has then be fitted. We refer to

[37] for a comparative study between metamodels based on polynomial chaos

expansions and the one based on Gaussian processes. We obtain a predictivity

coefficient of Q2 = 87%. This result is rather satisfactory, especially when it

is compared to the predictivity coefficient obtained by a simple linear model

(Q2 = 25%). Moreover, the test on Ishigami function (Section 4.2) has shown

that the estimation of Shapley effects with a metamodel of predictivity close to

90% gives results rather close to the exact values.

The Shapley effects are estimated by using the metamodel predictor instead

of ATHENA2D (Section 4.2). Due to the input dimension (d = 11), the random

permutation method is used with m = 104, Ni = 3, No = 1 and Nv = 104. The

cost is then 3 × 105 in terms of required metamodel evaluations. It would

be prohibitive with the “true” computer code ATHENA2D, but it is feasible

by using the metamodel predictor. Figure 9 gives the Shapley effects of the

elasticity coefficients (C11, C13, C33, C55) and orientations (Or1, Or2, Or3,

Or4, Or5, Or6, Or7). The lengths of the 95%-confidence interval (see Section

4.1) are approximately equal to 4%, which is sufficient to provide a reliable

interpretation. Note that the negative values of some Shapley effects are due to

the central limit theorem approximation.

By visualizing the Shapley effects, we can propose a discrimination in four

groups of inputs according to their degree of influence (note that such discrim-

ination is questionable due to the residual uncertainties on Shapley effects):

• Or1 and Or3 whose effects are larger than 20%,

• Or2 whose effect is 11%,

• C11, Or4, Or5, Or6 and Or7 whose effects range between 6% and 8%,

• C33, C55 and C13 whose effects are smaller than 3%. The FF setting could

be addressed with the inputs in this group.
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To be convinced by this FF setting, the variance of the metamodel output when

(C33,C55,C13) are fixed is compared with the variance of the metamodel output

when all the inputs vary. The variance with all inputs is 3.774× 10−22 and the

variance with the three fixed inputs is 3.572× 10−22. As expected, the decrease

of 5.3% corresponds approximately to the sum of the Shapley effects of C33, C55

and C13 (approximately 6%).

In the study of [48] which did not take into account the correlation, C33

and Or4 have been identified as influential inputs (effects larger than 9%). This

result shows the importance of taking into account the dependence structure

between inputs and the usefulness of the Shapley effects for FF setting in this

case. If we compare the (normalized) total Sobol’ indices of [48] and the Shapley

effects of our study, taking into account the correlation has led to:

• an increase in sensitivity indices for Or1, Or2 and Or3,

• a decrease in sensitivity indices for Or7 ,

• similar sensitivity indices for Or4, Or5 and Or6.

By looking at the input correlation matrix (Eq. (30)), we remark that we

can distinguish two groups of inputs as a function of their correlation degrees:

(Or1, Or2, Or3, Or4) and (Or5, Or6, Or7). We observe the homogeneity of the

correlation structure effects: the inputs inside the first group correspond to

an increase (or a stability) in sensitivity indices whereas the inputs inside the

second group correspond to a decrease (or a stability) in sensitivity indices.

6. Conclusion

In many applications of global sensitivity analysis methods, it is common

that the input variables have a known statistical dependence structure or that

the input space is constrained to a non-rectangular region. In this paper we

considered two answers to that issue: the Shapley effects (a normalized version

of the variance-based Shapley values proposed in [32] in the framework of sensi-

tivity analysis) and the methodology developed in [17]. The latter suggests the
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Figure 9: Shapley effects for the ultrasonic non-destructive control application. The vertical

bars represent the 95%-confidence intervals of each effect.

joint analysis of full and independent first-order and total indices to analyze the

sensitivity of a model to dependent inputs. In the present paper, we conducted a

comparative analysis between Shapley effects on one side and full first-order and

independent total indices on the other side. From analytical solutions obtained

with linear models and Gaussian variables, we have shown that the dependence

between inputs lead to a rebalancing of the corresponding Shapley effects, while

a full Sobol’ index of an input captures the effect of any input on which it is de-

pendent. Comparisons of Shapley effects with the complementary independent

first-order and full total indices are currently under investigation.

We have also illustrated the convergence of two numerical algorithms for

estimating Shapley effects. Our preliminary comparative study between Shap-

ley effects and Sobol’ indices is completed by the computations of ST(i)
and

Sind
(i) in [42] (see Section 2.1). The studied algorithms depend on various pa-

rameters: Ni (conditional variance estimation sample size), No (expectation

estimation sample size), Nv (output variance estimation sample size) and m
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(random permutation number). It would be interesting to investigate further

the response of the algorithms to these different parameters and to derive em-

pirical and asymptotic confidence intervals for the Shapley effects estimates.

Introducing a sequential procedure in the random permutation algorithm, in

order to increase m until a sufficient precision on the Shapley effects, seems also

promising. Moreover, it would be important in a future work to consider the

estimation algorithms capabilities on more complex dependence structures than

the pairwise cases exclusively discussed in the present paper.

[50] has started to develop more efficient algorithms in the Gaussian linear

case. Finally, we have shown the relevance of using a metamodel (here the

Gaussian process predictor) in the industrial situations where the computer

model is too time consuming to be evaluated thousands of times for the previous

algorithms to be applied. Future work (started in [42]) will consist in developing

an algorithm exploiting the complete structure of the Gaussian process allowing

to infer the error due to this approximation (see [51], [52] and [47] for the Sobol’

indices and [53] for the Derivative-based Global Sensitivity Measures).
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