
HAL Id: hal-01556409
https://inria.hal.science/hal-01556409

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ranking Approximate Query Rewritings Based on Views
Hélène Jaudoin, Pierre Colomb, Olivier Pivert

To cite this version:
Hélène Jaudoin, Pierre Colomb, Olivier Pivert. Ranking Approximate Query Rewritings Based on
Views. FQAS, Oct 2009, Roskilde, Denmark. pp.13 - 24, �10.1007/978-3-642-04957-6_2�. �hal-
01556409�

https://inria.hal.science/hal-01556409
https://hal.archives-ouvertes.fr

Ranking approximate query rewritings
based on views

Hélène Jaudoin1, Pierre Colomb2, and Olivier Pivert1

1 IRISA-ENSSAT, Université de Rennes 1, France
2 LIMOS, Université Blaise Pascal, France

jaudoin@enssat.fr, colomb@isima.fr,pivert@enssat.fr

Abstract. This paper considers the problem of rewriting queries using
views by means of a tolerant method. The approach proposed is based
on an approximate matching between the constraints from the query
and those from the views, in the case where both the query and the
views contain arithmetical constraints expressed as intervals. In such a
context, the answers obtained are not certain anymore but only more
or less probable. An algorithm which retrieves the top-k rewritings of
a given query is described. Experimentations are reported, which show
that the extra cost induced by the approximate nature of the rewriting
process is perfectly acceptable.

1 Introduction

An integration system provides a uniform query interface to distributed data
sources on a network. The problem of answering queries in integration systems
has been intensively studied during the last decade [10]. In particular, it has been
shown that the semantics of queries in such a setting can be formalized in terms
of certain answers [1]. Intuitively, a certain answer to a query Q over a global
schema — i.e., a uniform interface — with respect to a set of source instances is
an answer to Q in any database over that interface that is consistent with the
source instances. The problem of answering queries in integration systems can
be formalized as the problem of computing all the certain answers to the queries.
A technique to effectively computing the certain answers to a query in Local-
As-View based integration systems (i.e., where the data sources are defined as
views over the global schema) is to reduce this problem into that of rewriting
queries using views. Given a user query expressed over the global schema, the
data sources that are relevant to answer the query are selected by means of a
rewriting algorithm that allows to reformulate the user query into an equivalent
or maximally contained query whose definition refers only to views. Any such
query rewriting must satisfy all the constraints conveyed by a given query Q in
order to return only correct answers to Q.

However, for integration systems in open environments — like the web where
data sources are autonomous —, it can be very problematic to find views that
totally satisfy the domain constraints imposed by the query. This raises the

2

question of relaxing the notion of a mapping between the value domains of the
views and those from the query. As an example, let us consider a query Q that
aims to retrieve names of persons whose age is in the interval [28, 38] and two
views V1 and V2 such that:
V1 supplies names of persons whose age is in [25, 35] and
V2 supplies names of persons whose age is in [36, 46].
The views V1 and V2 both have an interval constraint on attribute age. The two
intervals are not included in that of the query, thus the mappings between the
two intervals and that of the query are only partial (imperfect). Moreover, since
V1 and V2 only supply names of persons, selection on attribute age is impossible,
hence V1 and V2 cannot be used to get certain answers to Q. In such a context,
rewriting algorithms based on the certain answer semantics fail to reformulate
the query, thus to provide the user with any answer.

In this paper, we assume an integration system based on a SuperPeer archi-
tecture [3] where each SuperPeer acts as a mediation system based on a Local-
As-View (LAV) approach. Each SuperPeer stores a global schema and a set of
views describing queries that can be performed on data sources connected to
the SuperPeer. Queries are submitted to a given SuperPeer that rewrites them
in terms of its views. We consider that views and queries are expressed in the
formal setting of Datalog and that they involve interval constraints. The idea we
advocate is to exploit approximate mappings between the constraints from the
views and those from the queries in order to compute approximate query rewrit-
ings. Any such rewriting Q′ is associated with a score between 0 and 1 which
reflects the probability for a tuple returned by Q′ to satisfy the initial query
Q. Consequently, the rewriting mechanism is not based on the notion of certain
answers anymore, but on that of probable answers. Since approximate mappings
between queries and views are obviously more frequent than strict mappings,
the number of possible approximate rewritings may be huge. To cope with this
situation, we propose an algorithm which generates only the top-k rewritings to
a given query. This algorithm has been implemented and some experimentations
on real data have been conducted. They show that the extra cost induced by
the approximate nature of the approach (with respect to regular query rewriting
algorithms) is perfectly acceptable.

Even though the notion of gradedness is central to the approach proposed
here, it is important to emphasize that the problem tackled is essentially different
from the issue of rewriting top-k queries using views dealt with, e.g., in [6]. In
the work presented here, only regular (i.e., Boolean) queries are considered and
the goal is not to compute a set of graded tuples, as in [6], but rather to com-
pute the most satisfactory sets of answers, corresponding to the best rewritings
of the query. In other words, we are not interested in rewriting top-k queries,
but rather in computing the top-k rewritings of regular queries. Moreover, al-
though the problem of rewriting queries using views in the presence of interval
constraints is well known and the corresponding rewriting language has been
shown to be a union of conjunctive queries with semi-interval constraints [13, 2],
our contribution is to tackle this problem by means of a tolerant method. The

3

purpose of our approach also differs from [7] which deals with the problem of
rewriting queries in the presence of imprecise view descriptions. In our approach,
imprecision results from the approximative nature of the mappings considered,
it does not concern the description of the data.

The remainder of the paper is organized as follows. Section 2 introduces
the general principle of our approach and defines the notion of an approximate
rewriting while Section 3 describes the algorithm aimed to compute the top-k
approximate rewritings of a user query. Section 4 presents some experimentations
and notably deals with the performance aspect, whereas Section 5 concludes the
paper.

2 Approximate rewriting using views

2.1 General objective

We study the problem of ranking query rewritings based on views in the setting
of conjunctive queries with simple interval constraints Xi ∈ [a, b], where Xi is an
attribute and a and b are constants. Such a query is an expression of the form:

Q(Y) : −r1(Y1), . . . , rn(Yn), C1, . . . , Cm

where Q, r1, ..., rn are predicate names, and Y , Y1,..., Yn are sets of variables,
i.e., sets of attributes names, and Y ⊆ ∪nj=1Yj . The atoms r1(Y1), . . . , rn(Yn) are
the subgoals of the query where r1, . . . , rn denote relations of the global schema.
The atom Q(Y) is called the head of the query and represents its result. Each
Ci, i ∈ [1,m] is an interval constraint represented hereafter by Xi ∈ IXi where
Xi belongs to ∪nj=1Yj and IXi

denotes an interval [a, b].
As an example, let us consider a global schema S made of the

relations Person(ssn, name, firstname), Child(ssn,Cfirstname,Cage) and
Emp(ssn, job, sal), and a query Q on S aimed to retrieve the social se-
curity number, name and first name of every person who has a child be-
tween 22 and 35 years old and a salary between 1200 and 2300 euros.
Q can be expressed as: Q(nss, name) : −Person(nss, name, firstname),
Child(nss, Cfirstname,Cage), Emp(nss, job, sal), Cage ∈ AQ, sal ∈ SQ
with AQ = [22, 35] and SQ = [1200, 2300].

A view is a named query which uses relations from the global schema S. The
idea we advocate in this paper is to reformulate a given query Q into expressions
based on views which satisfy the interval constraints attached to Q as well as
possible. Every such approximate rewriting is associated with a degree α ∈]0, 1]
which expresses the probability for a tuple that it returns to be a certain answer
to Q.

Definition 1 (Approximate rewriting). Let Q be a query, Q the query Q
without its interval constraints and V a set of view definitions. Query Q′ is an
approximate rewriting of Q using V if:

– Q′ is a conjunction of views from V,

4

– Q′ v Q, and
– Q′ vα Q, with α ∈]0, 1].

In this definition, Q′ vα Q means that Q′ is approximately contained in Q at a
degree α, according to the tolerant inclusion which will be defined in the next
subsection. An approximate rewriting is then a regular rewriting in terms of
views of a query when interval constraints are omitted. However when interval
constraints are considered, the approximate rewriting approximates the inter-
val constraints of the query. In addition to certain answers, such approximate
rewritings provide answers that are likely to satisfy the initial query. Since a de-
gree is associated with every approximate rewriting, it is possible to order them.
Therefore, instead of computing all the possible approximate rewritings of Q —
which can be costly and not very useful for the user —, we focus in the following
on the problem of computing only a meaningful subset of them: either the top-k
ones (k being an integer) or those whose associated degree is over a given thresh-
old αmin ∈]0, 1]. The computation of such approximate rewritings requires two
main steps: i) the research of candidate approximate rewritings, i.e., the regular
query rewritings of the query when interval constraints are omitted, and ii) the
assessment of the candidate approximate rewritings. As to the first step, we can
adapt regular algorithms aimed at rewriting queries using views such as, for ex-
ample, the MiniCon [13]. However, one must define a new algorithm in order to
assess and rank approximate rewritings of a given query.

Concretely, the assessment of an approximate rewriting is based on the pro-
portion of answers that it returns which satisfy the constraints from the user’s
query. Hereafter, we give a more formal definition of the notion of tolerant in-
clusion between two intervals that founds the semantics of the approximate
rewriting approach.

2.2 Tolerant inclusion

Let IQ′ and IQ be two intervals. We define the tolerant inclusion of IQ′ in IQ in
the following way:

deg(IQ′ ⊆tol IQ) = α =
| IQ′ ∩ IQ |
| IQ′ |

(1)

where |I| denotes the cardinality of I. Let IQ = [a, b], IQ′ = [c, d], and IQ∩IQ′ =
[e, f], and let us assume that the attribute considered is encoded by numbers
with n decimals (n ≥ 0), we get:

deg(IQ′ ⊆tol IQ) =
(f − e)× 10n + 1
(d− c)× 10n + 1

.

Obviously, this degree corresponds to the proportion of elements from IQ′ which
are in IQ′ ∩ IQ when the distribution of the values over the domain is uniform.

Equation 1 can be straightforwardly adapted to the case where one has avail-
able some histogram or distribution function describing the value distribution

5

over the domain. One uses the distribution function F the following way. As-
sume again that IQ = [a, b], IQ′ = [c, d], and IQ ∩ IQ′ = [e, f]. The degree
deg(IQ′ ⊆tol IQ) is given by:

α =

∑
x ∈ [e, f] F (x)∑
x ∈ [c, d] F (x)

. (2)

2.3 From tolerant inclusion to approximate rewritings

In this section, we exploit the notion of a tolerant inclusion to make query
rewriting using views a graded process. We consider a user query Q expressed
in terms of a global schema S and a candidate approximate rewriting Q′ based
on views, also expressed in terms of S, such that Q′ v Q. Taking the interval
constraints into account leads to computing tolerant inclusion degrees between
intervals involved in Q and Q′ according to the principle described above, then
to aggregating these degrees if several intervals are involved. The final degree
obtained can be seen as the satisfaction degree attached to the rewriting as a
whole. Due to the semantics of Equations 1 and 2, it expresses the probability
for an answer returned by the approximate rewriting Q′ to be an answer to the
initial query Q.

First, let us consider the situation where Q has a constraint on a single
attribute X. It is worth noting that when Q′ has no interval constraint on X,
the active domain of X is used as the interval constraint on X in Q′. When Q has
only one interval constraint, two cases must be considered: a) the constraint is
attached to a distinguished variable in Q′, i.e., X appears in the head of at least
one of the views defining Q′ and, b) the constraint is attached to an existential
variable in Q′, i.e., X does not appear in the head of the views from Q′. The
following proposition states how the satisfaction degree attached to Q′ can be
obtained in each case.

Proposition 1. Let Q be a query and Q′ a conjunction of views such that Q′ v
Q. Let X be the single attribute on which Q has an interval constraint. Let IQ
and IQ′ be the associated intervals in Q and Q′ respectively (if IQ′ does not
explicitly exist, the active domain of the corresponding attribute is used). Let α
be the degree of tolerant containment of Q′ in Q (Q′ vα Q).

a) if X is a distinguished variable of a view from Q′ then IQ is added to Q′ and
• if IQ ∩ IQ′ = ∅ then α = 0
• else α = 1.

b) if X is an existential variable in the views from Q′ then α = deg(IQ′ ⊆tol IQ).

Consequently, the degree attached to an approximate rewriting is either 0, 1 or
the inclusion degree between IQ and IQ′ . When α is 0, Q′ does not provide any
probable answer and is not considered an approximate rewriting. The proof of
this proposition is given hereafter.

6

– Case a): As X is a distinguished variable of at least one view from Q′, there
may exist a join over X between some views from Q′. Moreover, one or
several views from Q′ may have an interval constraint on X. Let {I1, . . . , Ik}
be the set of those intervals and t an answer returned by Q′. Then, the
projection of t on X belongs to the interval IQ′ = I1 ∩ . . . ∩ Ik.
As X is a distinguished variable of at least one view from Q′, one can apply
a condition on X and notably, the interval constraint IQ, as done in [13], in
addition to IQ′ = I1 ∩ . . . ∩ Ik. Therefore, two subcases must be considered.
Either IQ ∩ IQ′ is empty and Q′ does not provide any probable answer to
Q: then degree 0 is attached to Q′; or IQ ∩ IQ′ is not empty and Q′ with
the constraint IQ ∩ IQ′ , returns only certain answers to Q since only the
“compatible part” of the constraints was kept: then degree 1 is attached to
Q′.

– Case b): X is an existential variable in all the views from Q′. As no selection
and no join on X are possible ([13]), only one view of Q′ covers the subgoals
of Q involving X. Therefore, only this view has an interval constraint IQ′ on
X.
Let t be an answer returned by Q′. Then the projection of t on X belongs to
IQ′ . However IQ′ may not be contained in IQ. In this case, the satisfaction
degree of Q′ with respect to Q must be based on a tolerant inclusion between
IQ and IQ′ (cf. Equations 1 and 2).

In accordance with Equations 1 and 2, the degree obtained denotes the probability
that the projection on X of an answer to Q′ be in IQ, knowing that the projection
of answers to Q′ on attribute X is in the interval IQ′ . More generally, the degree
obtained with a such procedure specifies the probability for answers to Q′ to
be certain answers to Q. When constraints are associated with distinguished
variables, query constraints are added to the rewritings. Therefore, either we get
no correct answer and α is 0 or we get only certain answers and α is 1.

The following example illustrates the former case.

Example 1. Let us consider the query:
Q(N,A, S) : −Man(N,A), Salary(A,S), A ∈ IAQ

= [28, 38]
and the two views V6 and V7 defined as:
V6(N1, A1) : −Man(N1, A1), A1 ∈ IA1 = [25, 40]
V7(A2, S2) : −Salary(A2, S2), A2 ∈ IA2 = [27, 45].
A possible rewriting of Q(N,A, S) is Q′(N,A, S) : −V6(N,A), V7(A,S) where
attribute A appears in the head of V6 and V7, i.e., A is a distinguished vari-
able in V6 and V7. The final constraint applying to Q′ over attribute A would
then be the interval [27, 40]. However, since A is a distinguished variable, it
can be restricted by a selection and the only possible rewriting is Q′′(N,A, S) :
− V6(N,A), V7(A,S), A ∈ [28, 38]. The interval constraint added to Q′ is that
from Q. The degree attached to Q′′(N,A, S) is then 1 since the intersection
between [27, 40] and [28, 38] is not empty: Q′′ v1 Q.�

The example below illustrates Case b) of Proposition 1.

7

Example 2. Let us consider the query Q:
Q(ssn, name) : − Person(ssn, name, fname), Child(ssn,Cfirstname,Cage),
Cage ∈ [22, 35]
and Q′ the candidate rewriting of Q:
Q′(ssn, name) : −V8(ssn, name)
where
V8(ssn, name) : − Person(ssn, name, fname), Child(ssn,Cfirstname,Cage),
Emp(ssn, job, sal), Cage ∈ [20, 40].
The attribute Cage does not apear in the head of V8 and consequently is exis-
tential in V8. If we ignore the interval constraints, Q′ is contained in Q. On the
other hand, the presence of interval constraints leads to discard Q′ if a Boolean
matching is performed. Using a tolerant matching, the “containment degree” of
Q′ in Q is based on Equation 1. It is the extent to which interval [20, 40] is
included in [22, 35]. If one assumes that attribute age is encoded by integers, one
gets the inclusion degree α = (35−22)∗100+1

(40−20)∗100+1 = 14
21 . Hence: Q′ v0.67 Q.�

Let us now consider the general case where Q involves constraints on several
attributes. In this case, the problem is to compute the probability for an answer
returned by Q′ to be an answer to Q.

Proposition 2. Let Q be a query and Q′ be a view-based expression such that
Q′ v Q. Let CQ be the set of interval constraints — assumed to be independent —
in Q such that |CQ| = n. Let αi be the degree attached to Q′ for any constraint
ci ∈ CQ, obtained with the criteria of Proposition 1. The degree α of tolerant
containment of Q′ in Q (Q′ vα Q) is given by:

α =
n∏
i=1

αi

Proof. Under the independence assumption of the interval constraints, if αi
denotes the probability that an answer to Q′ satisfies constraint ci from Q, then
the probability α that it satisfies all of the constraints from Q is the product of
the αi’s.

The following example illustrates the computation of the overall degree at-
tached to a given rewriting in such a complex case.

Example 3. Let us consider the following views:
V1(ssn1, n1) : − Person(ssn1, n1, f1),
V2(ssn2) : − Child(ssn2, cf2, a2), a2 ∈ [20, 40],
V3(ssn3) : − Emp(ssn3, j3, s3), s3 ∈ [2100, 3400],
V5(ssn5) : − Child(ssn5, cf5, a5), Emp(ssn5, j5, s5), a5 ∈ [18, 38],

s5 ∈ [1000, 2400].
None of these views has any constraint on distinguished variables. Let us now
consider the query:
Q(ssn, name) : −Person(ssn, name, fname), Child(ssn,Cfirstname,Cage),

Emp(ssn, job, sal), Cage ∈ [22, 35], sal ∈ [1200, 2300]
and the approximate rewritings:

8

Q1(nss, nom) : −V1(nss, nom), V2(nss), V3(nss) and
Q2(nss, nom) : −V1(nss, nom), V5(nss).
Assuming that the attributes are encoded by integers, the degree attached to:

– the rewriting V1 of the first subgoal of Q is α1 = 1 as there is no interval
constraints for this subgoal.

– the approximate rewriting V2 of the second subgoal of Q is computed from
the interval constraints on age. It is α2 = (35−22)+1

(40−20)+1 = 14/21 = 0.67.
– the approximate rewriting V3 of the third subgoal is computed from the

interval constraints on salary. It is α3 = (2300−2100)+1
(3400−2100)+1 = 201/1301 = 0.15.

– the approximate rewriting V5 of the second and the third subgoals of Q is
computed from interval constraints on age and salary. It is:
α4 = (35−22)+1

(38−18)+1 ∗
(2300−1200)+1
(2400−1000)+1 = 14/21 ∗ 1101/1401 = 0.52.

Therefore, Q1(nss, nom) gets the degree 1∗0.67∗0.15 = 0.1 while Q2(nss, nom)
gets 1 ∗ 0.52 (Q1 v0.1 Q and Q2 v0.52 Q). The tuples issued from Q1 are not
likely to satisfy the query while those from Q2 have a probability over 50%.�

3 An algorithm for computing the top-k rewritings

Instead of computing all the approximate rewritings of a query and then rank-
ing them, we propose to adapt a well-known regular query rewriting algorithm,
namely Minicon [13], in order to directly generate the k best rewritings ranked
in decreasing order of their degree. MiniCon computes the maximally-contained
rewriting of a given query Q, i.e., that which provides all the certain answers to
Q, in the case where queries and views involve semi-interval constraints. The first
step of this algorithm consists in enumerating all the so-called MiniCon descrip-
tions (denoted by MCD’s) of Q. Intuitively, the existence of an MCD associated
with a view denotes that the view covers a subset of the query subgoals. The
second step is devoted to the computation of MCD combinations which cover
every subgoal in Q and which are pairwise disjoint w.r.t. the covered subgoals.

When tolerance comes into play, the first step of the MiniCon algorithm must
be slightly modified in order to associate a degree αM with every MCD M of a
given view V . First, the regular MiniCon procedure formMCD(V,M) is used
to check if an MCD can be created with V . If it is the case, the degree to be
associated with M is computed on the basis of Proposition 1 or 2.

As to the second step of the MiniCon algorithm, it can be modeled by a hy-
pergraph [4] where query subgoals correspond to vertices and each set of query
subgoals covered by an MCD corresponds to an edge. Any satisfactory combi-
nation of MCDs corresponds to an exact cover of this hypergraph. This type
of object is strongly related with the notion of a minimal transversal [8, 9] in
hypergraph theory. Even though determining whether a given hypergraph pos-
sesses at least one exact cover is an NP-Complete problem [11], some scalable
algorithms exist for computing all the exact covers of a hypergraph [12]. Such al-
gorithms can be used to get an efficient implementation of MiniCon. Algorithm 1

9

presented below belongs to this family; it generates either the k best rewritings
of a query, or all the rewritings whose degree is over a given threshold αmin.
The rewritings are generated in descending order of their degree. Therefore, the
k best rewritings of a query are those k first produced.

Our algorithm maintains an ordered list of partial rewriting of the considered
query. A partial rewriting is a set of MCDs, pairwise disjoint, that does not cover
all the subgoals of the query.

Algorithm 1 ComputeRW(X, M)
Require: M the set of weighted MCDs
Ensure: The set RW (Q,V) of rewritings of Q using V
1: RW (Q,V) = ∅
2: PartialRW =M
3: while PartialRW 6= ∅ do
4: M = PartialRW.max();
5: PartialRW = PartialRW \M ;
6: if M covers Q then
7: RW (Q,V) = RW (Q,V) ∪M ;
8: else
9: M.cover(M);

10: for m ∈M do
11: if M.α ∗m.α ≥ αmin then
12: PartialRW.Add(M +m);
13: end if
14: end for
15: M.uncover(M);
16: end if
17: end while

Given a partial rewriting M and an MCD m covering others subgoals, we
denote by (M+m) the (partial) rewriting corresponding to the concatenation of
M and m. Moreover, we denote by M.α the degree of a partial rewriting M . Let
us remind than according to previous propositions, the degree of a concatenation
(M + m).α is given by the product of M.α and m.α. Algorithm 1 takes as an
input the set M of weighted MCDs returned by the first step, stored in a data
structure which offers the following operations:

– cover(M) deletes all the MCDs sharing a subgoal with M ,
– uncover(M) re-inserts the MCDs sharing a subgoal with M previously

deleted by cover(M).

When we use a MCD M in a partial rewriting, we must forbid the use of all
MCDs intersecting M . Indeed, every subgoal of the query must be covered only
once. The operation cover() is used to do so. On the other hand, the purpose of
the function uncover() is to re-allow the use of an MCD in the rest of process.
Notice that M.cover(X).uncover(X) = M and the use of uncover(X) always

10

follows the use of an operation cover(). This data structure can be implemented
very efficiently using Dancing Links [12], which are a structure based on circular
doubly-linked lists to implement binary matrix. It makes it possible to implement
the operations cover and uncover with a complexity linear in the number of
deleted/inserted MCDs.

The ordered generation of the rewritings is based on the property that the
degree of a partial rewriting M can only decrease when it is combined with
another MCD m. This property ensues from the fact that the degrees handled
are probabilities, therefore real numbers between 0 and 1.

Algorithm 1 considers the partial rewritings in descending order of their de-
gree and tries to complete them so as to generate the set RW (Q,V) of rewritings
of the query Q considered. It first considers the partial rewritings made of a sin-
gle MCD (line 2). Then, as long as there are still partial rewritings which may
be completed, it considers the partial rewriting X of maximal degree (line 4),
checks if it is a rewriting of Q (line 6), and tries to complete it if necessary (lines
9 − 15). For doing so, one first removes from M all the MCDs which share a
subgoal with X, then one tries to form a (partial) rewriting with each of the
remaining MCDs. Finally, the MCDs previously removed are reinserted before
the next iteration.

4 Experimentations

The approach has been implemented in a prototype using Java SE 5, and Post-
greSQL 8.3 databases. We performed experimentations using sources of agricul-
tural data consisting of 310 tables containing about 600 Mb of data. Twenty
queries provided by real users were processed. In this experimental context, all
data sources are related to the same application area. Such a context is conve-
nient to find exact rewritings, and consequently certain answers (which explains
the large number of certain answers retrieved). The following results show the
evolution of the average number of tuples corresponding to certain and probable
answers to queries.

The first experimentation shows the evolution of the number of answers when
the threshold αmin changes. Here the parameter k is fixed to infinity, i.e., all the
rewritings are generated. Notice that the number of certain answers remains
constant. Indeed, all exact rewritings are computed for any value of αmin. On
the other hand, the number of probable answers decreases when the threshold
increases. When αmin equals 1, only certain answers are provided.

In the second experimentation, the threshold is set to 0 but k, the number
of best rewritings sought for, must be specified. When k decreases, the number
of probable answers decreases too, which shows that only the best rewritings
are generated. When k is less than 10, the number of certain answers decreases
too. Indeed, for some queries, a number of rewritings less than 10 is not always
enough to compute all the certain answers.

The prototype shows very good performances: the execution time is about 2
seconds in the worst case, and the performances of the approximate rewriting

11

Fig. 1. Impact of αmin on the
number of answers

Fig. 2. Impact of k on the number
of answers

approach are comparable to that of the classical MiniCon algorithm (in the worst
case, the overhead is only 10%). As mentioned above, the use of appropriate
data structures makes our algorithm highly scalable: it can efficiently manage
the extra MCDs induced by the approximate nature of the rewriting process.

5 Conclusion

This paper deals with the problem of getting ranked approximate rewritings in
order to process only the best ones, thus reducing the processing cost of a query
in a decentralized database context. We have proposed an approach to obtain
such rewritings on the basis of interval constraints involved in the views and the
query. This approach attaches a degree ∈ [0, 1] to each rewriting Q′ of a query
Q, which corresponds to the probability for a tuple returned by Q′ to be an
answer to Q. We have adapted the well-known MiniCon algorithm to get only
the best rewritings, reducing thereby the combinatorics relative to the potentially
high number of MCDs. Experiments show that the extra cost induced by the
approximate nature of the matching is perfectly acceptable, while a significant
number of additional answers is obtained.

These experiments also made it possible to estimate — in a specific context
— the amount of additional answers provided by this approach with respect to
the number of certain answers. However, it is worth noticing that the answers
produced may not satisfy all of the criteria from the initial user query. So as to
make the user aware of this state of fact, a simple solution consists in associating
a degree with each answer: that attached to the approximate rewriting which
produced the answer in question. Concerning this aspect, it would be interesting
to complete the experimentations by some tests involving real users so as to
assess their overall satisfaction regarding the non-certain answers that they are
provided with.

Generally speaking, the approach described here applies to a particular con-
text, namely the Web where exact mappings between the descriptions of data
sources and a given user query are not always possible. In such a context, the
answers to a user query can only be computed on the basis of the information

12

which is available, even if it is pervaded with uncertainty. Flexible rewriting ap-
proaches allow to provide users with answers where classical rewriting algorithms
based on the semantics of certain answers fail. The idea of computing probable
answers is not exactly new since it has been used for open integration contexts
in the works by Dalvi and Suciu [5] and by Das Sarma et al. [14]. The nature of
the probability degree associated with the answers returned in our approach is
different from that considered in these works, though. Indeed, in [5] it indicates
the probability of existence of the answers produced, while in [14] it ensues from
the uncertainty pervading the mappings between several data sources.

In terms of perspectives, we plan to investigate other, non-probabilistic,
semantics to approximate query rewriting using views, based on different visions
of query relaxation.

Acknowledgement. Work partially funded by the ANR Research Grant
ANR-05-MMSA-0007.

References

1. S. Abiteboul and O. M. Duschka. Complexity of answering queries using materi-
alized views. In Proc. of PODS 1998, pages 254–263, 1998.

2. F. Afrati, C. Li, and P. Mitra. Rewriting queries using views in the presence of
arithmetic comparisons. Theoretical Computer Science, 368:88–123, 2006.

3. Z. Bellahsene and M. Roantree. Querying distributed data in a super-peer based
architecture. In Proc. of the 15th Int. Workshop on Database and Expert Systems
Applications (DEXA’04), pages 296–305, 2004.

4. C. Berge. Hypergraphs. North-Holland, 1989.
5. N. Dalvi and D. Suciu. Answering queries from statistics and probabilistic views.

In Proc. of VLDB 2005, pages 805–816. VLDB Endowment, 2005.
6. G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering top-k queries

using views. In Proc. of VLDB 2006, pages 451–462. VLDB Endowment, 2006.
7. X. Dong, A. Halevy, and C. Yu. Data integration with uncertainty. In Proc. of

VLDB 2007, pages 687–698. VLDB Endowment, 2007.
8. T. Eiter and G. Gottlob. Identifying the minimal transversals of a hypergraph and

related problems. SIAM J., 24(6), 1995.
9. T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dual-

ization: A brief survey. Discrete Appl. Math. DOI, 10, 2007.
10. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294,

2001.
11. R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, 43:85–103, 1972.
12. D.E. Knuth. Dancing links. Arxiv preprint cs.DS/0011047, 2000.
13. R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using

views. In Proc. of VLDB 2000, pages 484–495, San Francisco, CA, USA, 2000.
14. A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping pay-as-you-go data inte-

gration systems. In Proc. of SIGMOD 2008, pages 861–874. ACM, 2008.

