
Exact Response Time Analysis for Fixed Priority
Memory-Processor Co-scheduling

Alessandra Melani, Marko Bertogna, Robert I. Davis,
Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Giorgio Buttazzo

Abstract—Recent technological advances have led to an increasing gap between memory and processor performance, since memory
bandwidth is progressing at a much slower pace than processor bandwidth. Pre-fetching techniques are traditionally used to bridge this
gap and achieve high processor utilization while tolerating high memory latencies. Following this trend, new computational models
have been proposed to split task execution in two consecutive phases: a memory phase in which the required instructions and data are
pre-fetched to local memory (M-phase), and an execution phase in which the task is executed with no memory contention (C-phase).
Decoupling memory and execution phases not only simplifies the timing analysis, but also allows a more efficient (and predictable)
pipelining of memory and execution phases through proper co-scheduling algorithms. This paper takes a further step towards the
design of smart co-scheduling algorithms for sporadic real-time tasks complying with the memory-computation (M/C) model, by
proposing a theoretical framework aimed at tightly characterizing the schedulability improvement obtainable with the adopted M/C task
model on single-core systems. In particular, a critical instant is identified for M/C tasks scheduled with fixed priority and an exact
response time analysis with pseudo-polynomial complexity is provided. Then, we investigate the problem of priority assignment for M/C
tasks, showing that a necessary condition to achieve optimality is to allow different priorities for the two phases. Our experiments show
that the proposed techniques provide a significant schedulability improvement with respect to classic execution models, placing an
important building block towards the design of more efficient partitioned multi-core systems.

Index Terms—Co-Scheduling, Response Time Analysis, Schedulability Analysis, Real-Time Systems.

1 INTRODUCTION

One of the major obstacles to improve the performance
of current computing systems is the growing divergence
between processor speed and memory speed, as the rela-
tively slow access to memory and communication resources
poses a serious limitation on the exploitation of processing
power [24]. To feed the CPU with tasks ready to execute,
memory and communication bottlenecks must be overcome
by guaranteeing a proper provisioning of new data and
instructions. Therefore, in addition to the processor, memory
becomes another crucial resource of interest to be scheduled.

The real-time community has already identified the need
for new scheduling algorithms and execution models allow-
ing an efficient exploitation of the computing power and the
derivation of tighter schedulability bounds both on single-
and multi-core platforms. A major effort in this sense is
represented by the PREM scheduling framework [44]. In
this framework, tasks consist of different phases: a memory
phase (M-phase) in which the task pre-fetches the required
instructions and data from memory and/or I/O devices,

• A. Melani and G. Buttazzo are with the TeCIP Institute, Scuola Superiore
Sant’Anna, Pisa, Italy. E-mail: {alessandra.melani, g.buttazzo}@sssup.it.

• M. Bertogna is with the University of Modena and Reggio-Emilia,
Modena, Italy. E-mail: marko.bertogna@unimore.it.

• R.I. Davis is with the University of York, York, England, UK, and INRIA-
Paris, Paris, France. E-mail: rob.davis@york.ac.uk.

• V. Bonifaci is with Istituto di Analisi dei Sistemi ed Informatica, CNR,
Rome, Italy. E-mail: vincenzo.bonifaci@iasi.cnr.it.

• A. Marchetti-Spaccamela is with Sapienza University of Rome, Rome,
Italy. E-mail: alberto@dis.uniroma1.it.

and an execution phase (C-phase) in which the task executes
without needing to access shared memory and communica-
tion devices. Depending on the model variants, tasks may
have an additional memory phase to store the computed
data back to memory, and/or they may be composed of
multiple consecutive memory-execution frames.

This paper focuses on a simpler model, referred to as
the M/C task model, where tasks include a memory phase
followed by an execution phase. The advantage of pre-
fetching execution models is that they decouple memory
and execution phases, so that different phases of different
tasks may overlap in time: during an M-phase, a task may
only suffer interference from other shared memory accesses,
whereas during a C-phase, a task is subject to interference
only from the C-phases of other tasks. Execution models
based on pre-fetching techniques are more amenable to tim-
ing analysis and have at least two fundamental advantages:
(i) By grouping together all memory accesses, it is possible
to better exploit burst read/write features (either DMA- or
cache-based) for simultaneously loading/storing multiple
memory locations in a back-to-back fashion, i.e., without
needing to pay the full memory latency for each required
instruction/data. This is particularly important for archi-
tectures featuring powerful DMA engines1; (ii) The coarser
granularity of the memory and execution phases may be
leveraged to devise smart co-scheduling algorithms that are
able to reduce the overall response time by overlapping

1. See, e.g., Texas Instrument Keystone II (http://www.ti.com/
product/66AK2H12), where a 20x speedup can be obtained exploiting
the burst read features of the integrated DMA engines.

M/C phases. Since the two phases act on separate resources
(bus and shared memory vs. processing elements), it is pos-
sible to hide memory latencies by properly orchestrating the
access to processing and memory resources. In particular,
this latter possibility will be thoroughly analyzed in this
paper, identifying the possible schedulability improvement
that can be obtained by leveraging the pipelined execution
of memory and execution phases of different tasks. Previous
related works adopting similar execution models showed
a significant improvement with respect to classic (i.e., non
pre-fetching) execution models, although they were based
on heuristic approaches and pessimistic schedulability anal-
yses [1], [2], [9], [44], [58], [60].

This work proposes an exact characterization of the
schedulability of M/C task-sets on a single core, identifying
critical instant scenarios that lead to worst-case response
times under fixed priority preemptive scheduling and pro-
viding a necessary and sufficient schedulability test for the
adopted task model. At a first sight, one may think that
existing results for classic sporadic task systems (i.e., with
tasks having just one phase) may be easily adapted to the
M/C task model. Indeed, the M/C model trivially reduces
to the classic sporadic task model when one of the two
phases is negligible for all tasks. However, when this is
not true, the simple fact that the memory and execution
phases of different tasks may run in parallel invalidates
most of the well-known results for classic preemptive task
systems. In particular, it will be shown that (i) preemptive
Earliest Deadline First (EDF) is not an optimal scheduling
algorithm for M/C task systems (its exact speedup factor is
2); and (ii) the synchronous tasks activation with minimum
inter-arrival separation among consecutive task instances
does not represent a critical instant for M/C task systems,
i.e., there may exist other release configurations that lead
to a higher response time. The last observation is partic-
ularly detrimental to the schedulability analysis, because
it prevents using the classic response time analysis [29] to
characterize the schedulability of M/C task systems. The
considerations stated above motivated us to investigate
better algorithms and schedulability tests to fully exploit
the potential of pre-fetching execution models for real-time
applications, providing an important building block for
the design of smart co-scheduling techniques. Interestingly,
the theoretical results introduced in the paper can be also
applied in the case of distributed transactions with two
execution stages, for which only sufficient schedulability
conditions with a tractable complexity have been derived
so far [41], [42], [45], [52], [55].

Contributions of the paper. This paper establishes the theo-
retical background for addressing the schedulability analy-
sis of M/C task systems. In particular, it provides the follow-
ing contributions for a configuration with a single core and
single memory channel: (i) EDF algorithm is proved to be
not optimal for scheduling M/C task systems. In particular,
a theoretical characterization in terms of speedup factor is
provided; (ii) A critical instant is defined for M/C task
systems scheduled with fixed-priority, proving that no other
task release configuration may produce a larger response
time; (iii) An exact response time analysis is derived for
M/C systems scheduled with fixed priority, leading to a

necessary and sufficient schedulability test; (iv) The paper
proves that Deadline Monotonic (DM) is not an optimal pri-
ority assignment strategy and that Ausley’s optimal priority
assignment (OPA) algorithm cannot be used in conjunction
with the exact test proposed in this paper; (v) Approximate
schedulability tests are derived to enable the applicability
of the OPA algorithm; (vi) The exact test proposed in this
paper is generalized to consider different priorities for the
M- and C-phase of each task, and possible priority assign-
ment strategies are discussed for this more general case. Fi-
nally, the schedulability improvement obtainable in a single-
core/single-memory setting is characterized by means of
extensive evaluations using randomly generated workloads,
identifying the systems that are more likely to benefit, and
to which extent, from pre-fetching execution models, and
the priority assignment strategies that perform better for the
proposed M/C scheduling model.

This work is an extended version of the RTNS 2015
paper on Memory-Processor Co-Scheduling in Fixed Priority
Systems [38]. The main extensions include Theorem 2, Sec-
tion 5 and Section 6.3.

2 RELATED WORK

The study of the interplay between memory access and
CPU utilization is not novel in the real-time computing
literature [47], [50]. More recently, there has been significant
interest in the research community in addressing shared
resource contention in multicore processors (see e.g. [61]
and references therein). To better characterize the interfer-
ence due to memory contention, new execution models
have been proposed in the literature making use of pre-
fetching techniques, which are widely adopted in the em-
bedded and high-performance computing domain for dif-
ferent complementary reasons. Rosen et al. [48] investigated
these techniques in the context of worst-case execution time
computation and bus access optimization. Lu et al. [34],
showed that pre-fetching techniques can improve the cache
(or scratchpad) locality reducing the average execution times.
They also allow hiding the memory latency by execut-
ing a pre-fetched task while pre-fetching the context of
another one [36], and, most importantly, they allow pre-
dictably computing, bounding and mastering the memory
interference due to concurrent accesses to shared memory
by multiple tasks/cores, simplifying the computation of
worst-case execution times. This latter issue has been ad-
dressed by Pellizzoni et al. [44] through the definition of
the Predictable Execution Model (PREM). The work was
focused on cache-based management of PREM-compatible
tasks, showing how to enforce a predictable scheduling
of memory and computing resources. It also showed how
to automatically re-factor the task code at compile time,
provided a set of restrictions is satisfied. Such restrictions
are in line with those typically imposed by state-of-the-art
tools for static timing analysis, and are also applicable to our
M/C model, making it suitable only for certain types of soft-
ware. An automatic tool for code re-factoring is presented
by Mancuso et al. [35], making the adoption of the M/C
model transparent to the programmer. Alternatively, M/C-
compliant code may be written using programming models
commonly adopted for heterogeneous computing systems

(e.g., OpenCL2, OpenMP3) leveraging offloading directives
that explicitly distinguish between shared and private data
items, and that allow data/instruction pre-fetching [36]. An
orthogonal approach to increase the cache locality and im-
prove the predictability of memory accesses is using cache
locking [46], [56] or partitioning [4] techniques. Scratchpad
memory allocation has been considered by Deverge and
Puaut [21] for single task scenarios. Whitham and Aud-
sley [59] proposed the Carousel mechanism for dynamic
scratchpad management in a multitasking system scheduled
with Rate Monotonic (RM). However, both approaches stall
the CPU while loading tasks to scratchpad, and, therefore,
do not take advantage of the overlapping of M/C-phases.

To allow the simultaneous execution of memory and
execution phases, a dynamic scratchpad management tech-
nique has been proposed by Wasly and Pellizzoni [57]. Bak
et al. [9] used a simulation-based approach to compare dif-
ferent scheduling algorithms for PREM tasks. Yao et al. [60]
proposed a TDMA-based scheduling algorithm for PREM
tasks on a multicore platform. Wasly and Pellizzoni [58] pre-
sented a schedulability analysis for non-preemptable PREM
tasks on single-core and partitioned multicore systems. The
scheduling and schedulability problems for globally sched-
uled PREM tasks were also addressed [1], [2]. All these
works are based on heuristic scheduling approaches and
sufficient schedulability analyses.

To the best of our knowledge, no exact schedulability test
is available for the considered task model. Some similarities
may be found with the real-time distributed computing
problem, where chains of tasks (also called pipelines or
transactions) are executed on different processing nodes so
that end-to-end deadlines are guaranteed [41], [42], [45],
[52], [55]. The M/C phases considered in our paper may be
seen as the precedence-constrained tasks composing a trans-
action in the distributed computing setting, each one exe-
cuting on a different machine. For this problem, holistic re-
sponse time analyses have been proposed for fixed-priority
systems [42], [43], [55] and EDF-based systems [41], [45],
[52]. Release jitters and offsets are introduced to account
for the delayed release of precedence-constrained tasks of a
transaction. These approaches typically imply a high com-
plexity due to the difficulties in finding a critical instant
scenario. For this reason, most works aim at providing only
sufficient schedulability conditions, while existing exact
analyses have an exponential complexity [42]. Alternative
sufficient analyses for real-time distributed systems include
the use of per-stage deadlines [40], real-time calculus [53],
timed automata [31], compositional analysis [23], and delay
composition algebra [26], [27]. The latter approach seems
to provide the best trade-off between schedulability perfor-
mance and complexity, and we will use it as a reference to
evaluate the performance of our analysis.

Finally, the M/C scheduling can be considered a special
case of the flow shop problem that has been studied by the
combinatorial optimization community for its interest in
production scheduling. The problem considers a two-stage
processing facility and a collection of independent jobs, each

2. Khronos Group, The OpenCL 1.1 Specifications, 2010:
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

3. OpenMP Application Program Interface v4, 2011:
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

comprising two tasks to be processed in order, one per stage.
Differently from our setting, all jobs are initially available,
and the objective is to minimize the makespan. If each stage
consists of a single resource, the problem has a polynomial
solution [28]; however, if at least one stage consists of two
or more resources, then the problem becomes strongly NP-
hard [25]. For this reason, several heuristics have been
proposed [15]. Recently, a polynomial-time approximation
scheme (PTAS) has also been proposed [49]. The optimality
results derived by Johnson [28] have been extended by
Melani et al. [39] to address the problem of selecting the
optimal operating speed for the two resources.

3 SYSTEM MODEL

We consider a set T of n periodic and sporadic real-time
tasks ⌧

1

, . . . , ⌧

n

, executing on a single-core platform. Each
task ⌧

i

is defined by a worst-case memory access time M

i

(i.e., the length of its M-phase), a worst-case computation
time C

i

(i.e., the length of its C-phase), a relative deadline
D

i

and a period, or minimum interarrival time, T

i

. We
assume constrained deadlines, i.e., D

i

 T

i

, 8i. Each task
⌧

i

generates an infinite sequence of jobs, with the first job
arriving at any time and successive job-arrivals separated
by at least T

i

time-units. We denote as r

j

i

(resp. f

j

i

) the
release (resp. finishing) time of the j-th job of task ⌧

i

, and
as d

j

i

= r

j

i

+ D

i

the absolute deadline of that job. Each job
released by ⌧

i

first pre-fetches data and instructions to the
local memory, taking at most M

i

time-units, and then it can
start executing for at most C

i

time-units on the processor.
For any job of ⌧

i

, we refer to as M/C point, the completion
time of its M-phase, and denote it as �

j

i

. We say that the
M-phase of a task is ready whenever a job of that task has
been released but it did not yet complete its M-phase, i.e.,
before its M/C point. Similarly, we say that a C-phase of a
task is ready whenever a job of that task completed its M-
phase, but it did not yet complete its C-phase, i.e., between
its M/C point and finishing time. In general, a job is ready
if either its M- or C-phase is ready. No assumption can be
made on the data locality of later jobs, but each new job will
always have to pre-fetch new data from the memory.

We denote as u

M

i

= M

i

/T

i

(resp. u

C

i

= C

i

/T

i

) the
memory (resp. computation) utilization of task ⌧

i

. UM and U

C

denote the total memory and computation utilization, i.e.,
U

M

=

P
8i u

M

i

and U

C

=

P
8i u

C

i

. The overall utilization
of the M/C task-set T is denoted as UT = U

M

+ U

C .
The Worst Case Response Time R

k

of task ⌧

k

is the
worst-case relative finishing time among all its jobs, i.e.,
R

k

= max

j is a job of ⌧k(f
j

k

� r

j

k

). We denote with R

M

k

the
worst-case response time of the M-phase of task ⌧

k

, i.e., from
the job release until the completion of the M-phase; and with
R

C

k

the worst-case response time of the C-phase of ⌧
k

, i.e.,
from the end of the memory phase until the completion of
the C-phase. We also assume that each task has a best-case
memory-access time and a best-case computation time equal
to zero. We assume a preemptive fixed-priority scheduler,
where each task has the same priority on the processor and
for accessing the memory. Tasks are indexed in decreasing
priority order, i.e., task ⌧

1

being the highest priority one.
An M-phase (resp. C-phase) of a higher-priority task can
preempt an M-phase (resp. C-phase) of a lower-priority one

at no additional cost. Moreover, there is no interference be-
tween M- and C-phases. This can be achieved if the M-phase
is mastered by a DMA device, while the C-phase is executed
by a processing element. Moreover, as shown in [57], the
local memory may be partitioned so that simultaneously
executing M/C phases never access the same partition. In
this way, the M- and C-phases may overlap since they access
different resources (DMA and shared memory on one side,
processing element on the other side) and different local
memory partitions.

We denote by hp(k) the set of tasks with priority higher
than ⌧

k

, while hep(k) indicates the set of tasks with priority
higher than or equal to ⌧

k

. To simplify the model, write-back
phases following the M- and C-phases are not modeled. We
remark that this assumption does not affect the validity of
the model: with some exceptions, the number of (shared
memory) store operations of typical real-time applications is
significantly smaller than the number of read requests. Task
instructions do not need to be written back. Data structures,
images and input signals to process are also not written
back. For applications like image detection, surveillance,
and control systems, the output of the C-phase is typically
restricted to a few actuation operations or detection signals.
Moreover, if tasks are periodic and relative deadlines are
implicit, write-back phases can be combined with the (read)
M-phase of the subsequent job [44], [58].

We now discuss two simplifying assumptions within
the considered system model. First, as with much of the
real-time scheduling literature, preemption overheads are
neglected. This is typically done to enable the derivation
of exact schedulability tests, optimal scheduling algorithms
and a clearer understanding of the scheduling problem.
However, the impact of preemptions should be carefully an-
alyzed before applying the theoretical results to a practical
use case. In particular, when task footprints are comparable
to the size of the local memory, a preempting task may
evict a significant amount of memory blocks that are useful
to a preempted task, leading to a considerable preemption
delay [3]. This issue can either be solved by (i) assuming
the local memory is sufficiently large to accommodate the
footprint of all tasks, (ii) considering a memory penalty
for each task resuming after a preemption, or (iii) inte-
grating the presented schedulability analysis within the
limited preemption framework [14]. This last approach
seems promising to limit, or even avoid, the preemption
overhead by encapsulating consecutive M/C phases within
a non-preemption region, and is the subject of our ongoing
work. The second simplifying assumption is to consider
that the M-phase is fully preemptable. Most current hard-
ware implementations do not allow a preemptive DMA
behavior; however, preemptable DMA controllers have been
advocated to reduce starvation and priority inversions ef-
fects [50], [51]. Further, some industrial solutions have en-
hanced DMA controllers to enable fine-grained control for
easier preemption. For example, the Enhanced DMA engine
TMS320C645x (EDMA3) by Texas Instruments features an
Intermediate Transfer Chaining mechanism for breaking
up large transfers into multiple smaller transfers4. This
approximated preemption support is achieved with an effi-

4. http://www.ti.com.cn/cn/lit/ug/spru966c/spru966c.pdf

a) b)

⌧1

⌧2

k

2k

✏

⌧1

⌧2

k k

Figure 1: EDF is not optimal for collections of sporadic M/C
tasks. In the figure, striped blocks are M-phases, a large dot
marker indicates job completion, and a cross indicates job
completion but deadline missed.

cient pipelined mechanism that is much more effective than
classic cycle-stealing techniques, leading to a significantly
smaller overhead. The theoretical analysis for the M/C
model presented in this paper, assumes fully preemptive
M- and C-phases. The analysis would need to be enhanced
to account for limited preemption in the M-phase before it
could be used to analyze systems built with today‘s DMA
controllers; again, this is the subject of our ongoing work.

4 SCHEDULABILITY ANALYSIS

Before presenting our analysis for M/C task systems, we
first show that some established results for classic single-
phase systems are not valid for the M/C model. In par-
ticular, while EDF is an optimal algorithm for arbitrary
collections of regular jobs [20], it is provably not optimal
for sporadic M/C jobs, as shown in the following example.

Example 1. Consider a system composed of two tasks: a task
⌧

1

with an M-phase M

1

= ✏ = 1, a C-phase C

1

= k = 10,
a deadline D

1

= k + 3 = 13, and a minimum inter-arrival
time T

1

= +1; and a second task ⌧

2

with an M-phase M

2

=

k = 10, a C-phase C

2

= ✏ = 1, a deadline D

2

= k + 2 =

12, and a minimum inter-arrival time T

2

= +1. Figure 1a)
shows the schedule with EDF: task ⌧

1

is given lower priority
than ⌧

2

, resulting in a response time of 2k + 1 = 21 for ⌧

1

,
missing its deadline. Instead, if the M-phase of ⌧

1

is given a higher
(static) priority than that of ⌧

2

, and conversely the C-phase of ⌧
2

has higher (static) priority than that of ⌧
1

, we show the critical
instance leading to the worst-case response time (see Theorem 4)
in Figure 1b). The longest possible response times for the M-phases
are 1 for ⌧

1

and 11 for ⌧
2

. Similarly, the longest possible response
times for just the C-phases (from when they are released) are 1

for ⌧
2

and 11 for ⌧
1

. Therefore, the overall response time for both
tasks cannot exceed 12, so that both tasks meet their deadlines.

We also derive results using a theoretical method of com-
paring the worst-case performance of different scheduling
algorithms for the M/C scheduling problem based on a
resource augmentation metric referred to as the speedup fac-
tor [30]. Specifically, we derive bounds on the factor by
which the speed of the system (affecting both M- and C-
phases) needs to be increased to ensure that any task set
that is schedulable under some scheduling algorithm A is
guaranteed to be schedulable under another algorithm B.
When A is an optimal algorithm5, then this speedup factor

5. The optimal algorithm may be hypothetical or clairvoyant.

provides a measure of the sub-optimality of algorithm B.
Speedup factors have previously been derived for the classic
sporadic task model, comparing fixed priority and EDF
scheduling under both preemptive and non-preemptive
paradigms [18], [17], [19]. To the best of our knowledge,
this is the first time that such measures have been derived
for the M/C scheduling problem.

In Example 1, if EDF is used, ⌧
1

has a response time of
2k + 1, which shows that EDF is sub-optimal by a speedup
factor of at least 2k+1

k+3

, which tends to 2 as k becomes large. In
the following, we prove that 2 is the exact speedup factor
required by EDF to successfully schedule any sporadic M/C
task-set that is schedulable by an optimal algorithm. To
this aim, we first recall as a preliminary notion the exact
schedulability test for classic sporadic task systems (where
each task ⌧

i

has only one single execution phase of worst-
case length E

i

) scheduled with EDF [10].

Theorem 1 (from [10]). A set of single-phase tasks is schedulable
under EDF if and only if, in every time interval, the total processor
demand requested by the task-set is no greater than the length of
the interval [10]. In other words, a task-set is schedulable under
EDF if and only if: 8t � 0

P
n

i=1

DBF

i

(t) t, where
DBF

i

(t) = max

⇣
0, 1 +

j
t�Di
Ti

k⌘
E

i

.

The following theorem establishes the exact speedup
factor of EDF for the M/C scheduling model.

Theorem 2. The exact speedup factor required so that EDF is
guaranteed to be able to schedule any sporadic M/C task-set that
is schedulable according to an optimal algorithm is 2. Stated
otherwise, the sub-optimality of EDF for the M/C scheduling
problem is 2.

Proof. Consider an arbitrary M/C task-set. Let DBF

M

(t)

be the sum of the demand bound functions for all of the
tasks for a time interval of length t considering only the M-
phase of each task. Similarly, let DBF

C

(t) be the sum of
the demand bound functions for all of the tasks for a time
interval of length t considering only the C-phase of each
task. Recall that the exact schedulability test for sporadic
tasks with only a computation phase under EDF requires
that 8t � 0 DBF

C

(t) t. It is sufficient for schedulability
under EDF that an M/C task-set is schedulable under a se-
rializing version of EDF that does not allow any concurrent
access to memory and computation. Hence, the task-set is
schedulable under EDF on a system of speed S

1

, where

S

1

= max

8t�0

✓
DBF

M

(t) +DBF

C

(t)

t

◆

max

8t�0

✓
DBF

M

(t)

t

◆
+max

8t�0

✓
DBF

C

(t)

t

◆
.

Let S

2

denote the right-hand side of the above inequal-
ity. Next, we consider an optimal algorithm for the M/C
scheduling problem. Necessary conditions for schedulabil-
ity under an optimal algorithm are that (i) the task set
is schedulable considering only the M-phase of each task,
ignoring all the C-phases, and (ii) the task set is schedu-
lable considering only the C-phase of each task, ignoring
all the M-phases. Since EDF is an optimal single machine
scheduling algorithm for sporadic task-sets, it follows that
it is necessary for schedulability under an optimal algorithm

that the system speed is such that EDF can schedule the M-
phases alone, and also that EDF can schedule the C-phases
alone. Hence S

3

is a necessary system speed required by an
optimal algorithm for the M/C scheduling problem:

S

3

= max

8t�0

✓
DBF

M

(t)

t

,

DBF

C

(t)

t

◆
. (1)

Since any given task-set is guaranteed to be schedulable on
a system of speed S

2

using EDF, and cannot be schedu-
lable with any (optimal) algorithm on a system of speed
lower than S

3

, it follows that an upper bound on the
speedup factor required by EDF is given by S = S

2

/S

3

. Let
L

M

= max8t�0

⇣
DBFM (t)

t

⌘
and L

C

= max8t�0

⇣
DBFC(t)

t

⌘
.

It follows that
S =

L

M

+ L

C

max(L

M

, L

C

)

. (2)

It is easy to see that the speedup factor S is maximized
when L

M

and L

C

are equal, in which case the upper
bound speedup factor is S = 2. As we already showed in
Example 1 that S = 2 is a lower bound, the exact speedup
factor required by EDF for the M/C problem is 2.

Another result that is no longer valid for the M/C model
concerns the concept of critical instant. A critical instant is
a particular release configuration that leads to the largest
possible response time under fixed priority scheduling for
a given task. For regular (independent) task instances, a
critical instant is given by the synchronous release of all
tasks, with jobs re-released as soon as possible, i.e., with
consecutive task instances separated by their minimum
inter-arrival time [33]. The following example shows that
this is no longer true for M/C task-sets.

Example 2. Consider a system composed of two periodic or
sporadic tasks: a task ⌧

1

with an M-phase M

1

= 0, a C-phase
C

1

= 2, and a deadline D

1

= 2; and a task ⌧

2

with an M-
phase M

2

= 2, a C-phase C
2

= 1, and a deadline D
2

= 3. Both
tasks have an arbitrarily large period. When both tasks are released
synchronously, any work-conserving scheduler6 will immediately
start executing the C-phase of ⌧

1

, completing right before its
deadline; meanwhile, ⌧

2

executes its M-phase, leaving sufficient
slack to complete its computing part before its deadline. When
instead the release of ⌧

1

is postponed by one time unit, at least one
of the tasks will miss its deadline, independently of the adopted
scheduling algorithm.

The above example can be identically used to show that
the synchronous periodic release scenario is not a critical
instant for sporadic M/C task systems scheduled with
fixed-priority. Since the schedulability analysis of classic
sporadic task systems scheduled with fixed-priority hinges
on the synchronous periodic critical instant, this prevents
the adoption of existing results for the considered setting. In
particular, the response time analysis for sporadic task sets
with constrained deadlines given in the following theorem
is not applicable to the M/C model.

Theorem 3 (from [29]). For classic sporadic task systems with
constrained deadlines scheduled with fixed-priority, the worst-case

6. In the M/C model, a scheduler is work-conserving if it never idles
a resource (core or memory) whenever there is a ready phase (C- or
M-phase, respectively).

response time of a task ⌧

k

can be computed by finding R

k

from
the following iterative relation, starting with R

k

= E

k

:

R

k

X

j2hep(k)

⇠
R

k

T

j

⇡
E

j

. (3)

The above theorem may be applied to the considered
M/C task model as a sufficient test, i.e., to compute an
upper-bound on the worst-case response time of an M/C
task, using the sum of the memory and computation phases
as the worst-case execution time: E

j

= M

j

+ C

j

, 8⌧
j

.
However, this approach is pessimistic since it does not take
advantage of the possible overlapping of memory and exe-
cution phases in M/C task systems. An alternative approach
is using the classic response time analysis to find the worst-
case response time of the M-phase (i.e., using E

j

= M

j

, 8⌧
j

),
and use this value as a release offset for the corresponding
C-phase. This second approach has been adopted in the real-
time literature for distributed task systems [41], [42], [45],
[52], [55], providing offset-based response time analyses
leading to tighter (still, only sufficient) schedulability tests.

In the remainder of this section, we extend the state-of-
the-art by providing a necessary and sufficient schedula-
bility test for M/C sporadic task systems with constrained
deadlines scheduled with fixed-priority. For this purpose,
we identify a new critical instant that leads to the worst-
case response time of fixed-priority M/C tasks, and derive
an exact response time analysis for the considered setting.

4.1 Critical Instant
The problem in deriving a critical instant for M/C task
systems is due to the precedence constraint between the
M- and the C-phases. When trying to maximize the overall
response time R

k

of a task ⌧

k

(see Equation (4)), there
may be configurations that maximize the response time R

M

k

of the M-phase, but that do not maximize the response
time R

C

k

of the corresponding C-phase, and vice-versa.
Also, the maximum overall response time may theoretically
correspond to a configuration that does not maximize either
the memory or the computation response time, making
it significantly more complex to identify a critical instant
scenario. Conversely, if one were able to find a configuration
that maximizes both the memory response time and the
computation response time, this would automatically give
a valid critical instant. Such a configuration would lead to
a response time of RM

k

for the M-phase, and of RC

k

for the
C-phase. Since the two phases may not overlap, the overall
response time of a task ⌧

k

may be easily found as:

R

k

= R

M

k

+R

C

k

. (4)

Below, we prove that such a configuration indeed exists.
To do that, we first introduce a nomenclature to distinguish
the different kinds of interfering contributions that each
task may experience. We will denote as J

k

the job of task
⌧

k

under analysis, dropping the job index to simplify the
notation (i.e., the release time of J

k

will be denoted as
r

k

, and its M/C point as �

k

), and as ⌧

i

a generic (higher
priority) task whose jobs interfere with ⌧

k

. Jobs interfering
with J

k

may be divided into memory-interfering, processor-
interfering and dual-interfering, as follows.

RM
1

RM
2

RM
k

r⇤k +Rkr⇤k

b)

fkrk

a)

�k

. . .

⌧k

⌧k

⌧2

⌧2

⌧1

⌧1

.

... . . .

. . .

r⇤k +RM
k

Figure 2: Synchronous release (a) and critical instant config-
uration (b).

Definition 1. A job of task ⌧

i

is said to be M-interfering (resp.
C-interfering) with J

k

if the M-phase (resp. C-phase) of J
k

is
ready but it cannot execute while the M-phase (resp. C-phase) of
the job of ⌧

i

is executing.

Definition 2. A job of task ⌧
i

is said to be dual-interfering with
J

k

if it is both M- and C-interfering with J

k

.

Lemma 1. Each higher priority task ⌧

i

, 1 i < k, has at most
one dual-interfering job with J

k

.

Proof. The M-phase (resp. C-phase) of job J

k

will be inter-
fered only by M-phases (resp. C-phases) of higher priority
jobs. Since there is only one M-phase and one C-phase in
the considered model, J

k

cannot be C-interfered before �

k

,
and it cannot be M-interfered after �

k

. Also, due to the
constrained deadline model, each higher priority task ⌧

i

has
at most one job ready at time �

k

.

To clarify the nomenclature, consider the example in
Figure 2(a), where the synchronous release pattern is as-
sumed for all tasks ⌧

1

, . . . , ⌧

k

in a fixed-priority schedule.
With respect to the considered job J

k

, the first two jobs
of the highest priority task ⌧

1

are M-interfering jobs, while
the latter two are C-interfering jobs. The first job of ⌧

2

is
instead a dual-interfering job, as it interferes with J

k

both in
memory and CPU. The above example will be used in the
following to derive a critical instant configuration for M/C
task systems. In particular, we will show that by shifting
right all interfering tasks such that they all have a dual-
interfering job with M/C point aligned with that of the
interfered job J

k

, then the response time of J
k

is maximized.
This result is formally proved in the following theorem.

Theorem 4 (Critical Instant). The maximum response time of a
job J

k

of a task ⌧

k

in a fixed-priority M/C system is found when
all higher priority tasks ⌧

i

, i 2 hp(k) have:

1) a dual-interfering job completing its M-phase an in-
finitely small amount of time earlier than the M/C point
of J

k

;
2) all jobs released periodically;
3) a null M-phase for all (C-interfering) jobs released after

the M/C point of J
k

.

Proof. We will prove that under the considered configura-
tion, summarized in Figure 2(b), the response times of both
the M- and C-phases of the considered job J

k

are individu-
ally maximized. We first prove that the response time of the
M-phase of J

k

is maximized under the considered scenario.

Lemma 2. The response time of the M-phase of J
k

is maximized
under the critical instant of Theorem 4.

Proof. Since there is only one M-phase per job, and it is
the first phase to execute (i.e., it does not have any prece-
dence constraint), the problem is similar to the response
time analysis of classic (single-phase) systems. By analogy
with classic sporadic task systems, the synchronous periodic
release pattern (as in Figure 2(a)) maximizes the response
time R

M

k

of the memory phase of J

k

[33]. Under such a
configuration, let J

⇤
i

be the last M-interfering job of each
higher priority task ⌧

i

. It will be either an M-interfering
job (e.g., ⌧

1

), or a dual-interfering job (e.g., ⌧
2

). In either
case, the M/C point of J

⇤
i

cannot be later than the M/C
point of the interfered job J

k

, i.e., �⇤
i

< �

k

. Starting from
⌧

k�1

and proceeding in reverse priority order, we now shift
right each higher priority task ⌧

i

until the M-phase of its
job J

⇤
i

completes an infinitesimal amount of time earlier
than �

k

(as in Figure 2(b)), the response time of J
k

does not
change, because, by construction, none of the M-interfering
instances exits the window [r

k

, r

k

+ R

M

k

] from the right.
Note also that no other M-phase may enter the window from
the left since R

M

k

is already the maximum possible.

Note that the above lemma can be identically used to
show that also the response time of the M-phase of each
dual-interfering job J

⇤
i

is maximized under the considered
scenario. We now prove that also the response time of the
C-phase of J

k

is maximized under the considered scenario.

Lemma 3. The response time of the C-phase of J
k

is maximized
under the critical instant of Theorem 4.

Proof. In the critical instant configuration, the M-phase
of each dual-interfering job J

⇤
i

has a maximal response
time equal to R

M

i

. This means that the C-phase of each
such job becomes ready at the latest possible instant, i.e.,
�

⇤
i

= r

⇤
i

+ R

M

i

. Moreover, according to the definition of
critical instant of Theorem 4, later instances are released
as soon as possible, with no M-phase. This means that
the largest possible C-phase workload from ⌧

i

is imposed
to lower priority C-phases that become ready at �

⇤
i

. Note
that, in a single-core system scheduled with fixed-priority,
all higher priority C-phase workload will C-interfere with
a lower priority C-phase, according to Definition 1. Since
the M/C points of all jobs J

⇤
i

are aligned with �

k

, J
k

will
experience the maximum possible C-interference by each
higher priority task ⌧

i

. This leads to the worst-case response
time R

C

k

for the C-phase of J
k

.

Having proved that the response times of both the M-
and C-phases of J

k

are individually maximized, the theorem
follows.

Note that assuming that the interfering jobs released af-
ter �

k

may have a null M-phase is not an over-constraining
assumption, but it is needed to comply with the notion of
“sustainability”, as defined by Burns and Baruah [13]. A

scheduling algorithm or a schedulability test is defined to be
sustainable if any task system determined to be schedulable
remains so when it behaves “better” than its worst-case
specification; for example, when some of the tasks executes
for less than its worst-case execution time. Therefore, the
schedulability of the M/C task system has to be ensured
also when the M-phase of some of the tasks takes less than
M

i

, or it is completely skipped, as in the critical instant
configuration of Theorem 4.

4.2 Exact Response Time Analysis
Based on the identified critical instant, the following theo-
rem allows computing the exact worst-case response time of
each M/C task ⌧

k

.

Theorem 5. In a fixed-priority system, the worst-case response
time of each constrained deadline M/C task ⌧

k

can be computed
as R

k

= R

M

k

+R

C

k

, where RM

k

is first found from the following
iterative relation, starting with R

M

k

= M

k

:

R

M

k

X

i2hep(k)

⇠
R

M

k

T

i

⇡
M

i

, (5)

and then it is used in the following iterative relation to find R

C

k

,
starting with R

C

k

= C

k

:

R

C

k

 C

k

+

X

i2hp(k)

⇠
R

C

k

+R

M

i

T

i

⇡
C

i

. (6)

Proof. Consider the critical instant configuration of The-
orem 4. Since both the M- and C-phase response times
of J

k

are individually maximized under the considered
configuration, the worst-case response time R

k

of ⌧

k

can
be computed using Equation (4). To compute the worst-case
response time R

M

k

of the M-phase, we note that it is exactly
the same obtained under the synchronous release pattern
(see the proof of Lemma 2). Therefore, by analogy with the
classic sporadic task model, it can be simply found by the
fixed-point iteration of Equation (5).

The worst-case response time R

C

k

of the C-phase can
instead be found by analogy with the response time anal-
ysis for classic sporadic tasks with release jitter (i.e., the
maximum deviation of successive task releases from its
period) [7], where the worst-case response time of the M-
phase behaves as a release jitter for the C-phase. Consider
the C-interfering workload produced by the higher priority
tasks when (i) the C-phase of the first instance of each task
becomes ready with an offset RM

i

, (ii) the M/C point of all
the first instances are aligned, and (iii) later instances are re-
leased as soon as possible, with no M-phase (see Theorem 4).
Under such a configuration, the C-phase response time of J

k

can be found by considering the C-interfering contributions
from each higher priority task. That is, for each ⌧

i

, i < k, (i)
the dual-interfering job J

⇤
i

, and (ii) the remaining interfering
instances computed as

l
R

C
k �(Ti�R

M
i)

Ti

m
, each contributing

for C

i

. By adding the worst-case execution time C

k

of the
task under analysis, we obtain:

R

C

k

 C

k

+

X

i2hp(k)

✓
1 +

⇠
R

C

k

� T

i

+R

M

i

T

i

⇡◆
C

i

.

By simplifying the terms, Equation (6) follows.

A simple (necessary and sufficient) schedulability test
can be found by checking whether the worst-case response
time R

k

computed with Theorem 5 is D

k

, for each task ⌧

k

in the system. Whenever the response time of a task exceeds
its deadline, the tests stops, concluding that the task set is
not feasible with fixed priority.

Note that Theorem 5 provides a stronger result than the
existing analysis for distributed scheduling settings [42],
[43], [55], which is able to provide only sufficient schedu-
lability conditions for transactions with dynamic offsets in
a tractable time. Instead, the critical instant configuration
identified in Section 4.1 is shown to jointly maximize the
worst-case response times of both the M-phase and the C-
phase, providing a necessary and sufficient response time
analysis for checking the schedulability of M/C task sys-
tems with pseudo-polynomial complexity.7

5 THE PRIORITY ASSIGNMENT PROBLEM

In this section, we study the problem of priority assignment
for the M/C scheduling model. First (Section 5.1), we show
that, as opposed to the classical uniprocessor case [32],
Deadline Monotonic (DM) is not an optimal priority order-
ing. In addition (Section 5.2), we show that the Audsley’s
Optimal Priority Assignment algorithm (OPA) [6], [8] can-
not be used in conjunction with the exact test proposed in
Section 4.2. We then propose a sufficient test that is com-
patible with the OPA algorithm (Section 5.3) and evaluate
its performance against the DM priority assignment, which
can be applied in combination with our exact test. Finally
(Section 5.4), we elaborate on the possibility of assigning
different priorities to the M- and C-phase of each task.

5.1 Deadline Monotonic (DM) is not optimal
The following counterexample shows that DM is not an
optimal priority assignment for the M/C scheduling model.

Example 3. Consider a system composed of three tasks with the
following parameters: ⌧

1

= (M

1

, C

1

, D

1

= T

1

) = (9, 1, 20),
⌧

2

= (1, 9, 24), ⌧
3

= (5, 5, 35). Figure 3a) shows the schedule
with DM in the critical instant scenario. In this configuration,
R

M

1

= 9, RC

1

= 1, R
1

= 10 20 for task ⌧

1

, and R

M

2

= 10,
R

C

2

= 10, R
2

= 20 24 for task ⌧

2

. However, ⌧
3

misses its
deadline, since RM

3

= 15, RC

3

= 25, R
3

= 40 > 35. Conversely,
all tasks become schedulable in priority order [⌧

2

, ⌧

1

, ⌧

3

], as shown
in Figure 3b). In particular, we have: RM

2

= 1, RC

2

= 9, R
2

=

10 24 for task ⌧

2

; RM

1

= 10, RC

1

= 10, R
1

= 20 20 for
task ⌧

2

, and R

M

3

= 15, RC

3

= 16, R
3

= 31 35 for task ⌧

3

.

Intuitively, DM fails when swapping the priority order of
two higher priority tasks changes their offset at the critical
instant, such that the interference on a lower-priority task
is increased. In the above example, ⌧

3

is not schedulable
with DM, as the execution of its C-phase suffers interference
from two instances of each higher-priority task, leading to

7. While a deep analysis of partitioned multi-core systems is left as
a future work, note that the test of Theorem 5 can also be adopted for
partitioned multi-core systems, where each task is statically assigned
to a given core, while all cores share the same main memory. In this
case, the sum of Equation (6) has to be limited to higher priority tasks
assigned to the same core of the considered task ⌧k , while Equation (5)
is still extended to all higher priority tasks.

a) ⌧
2

⌧
1

⌧
3

�
3

b) ⌧
1

⌧
2

⌧
3

�
3

Figure 3: Counterexample on the sub-optimality of DM.

a deadline miss for ⌧

3

. By swapping the priorities of ⌧

1

and ⌧

2

, as in Figure 3b), their offsets in the critical instant
configuration decrease by one instance the interference of
⌧

2

on the C-phase of ⌧
3

, which now becomes schedulable.
This result suggests how to reason about different priority
assignment algorithms. In the context of uniprocessor fixed-
priority scheduling, the Optimal Priority Assignment (OPA)
algorithm [6], [8] solved the problem of optimally assigning
priorities for asynchronous task-sets (i.e., which do not
necessarily share a common release time) [5], and for tasks
with arbitrary deadlines (i.e., which may be greater than
their periods) [54]. In the next section, we reason about the
applicability of OPA for M/C task-sets.

5.2 Applicability of OPA algorithm
In [16], the authors showed that three necessary and suffi-
cient conditions need to be fulfilled to enable the applicabil-
ity of OPA in combination with a given schedulability test. If
these conditions are verified, OPA provides optimal priority
assignment with respect to the considered test.

Theorem 6. The exact RTA-MC test (Theorem 5) is OPA-
incompatible.

Proof. It suffices to show that Condition 1 in [16] does not
hold for the RTA-MC test. The response time of the C-
phase of any task ⌧

k

(Equation (6)) depends on the response
times of the M-phase of higher-priority tasks, which in turn
depend on the relative priority ordering of the tasks. For
instance, the task set of Example 3 is deemed schedulable by
RTA-MC with priority order [⌧

2

, ⌧

1

, ⌧

3

]; however, it becomes
unschedulable by switching the order of ⌧

1

and ⌧

2

, because
⌧

2

at priority level 2 increases the interference on ⌧

3

, which
is then deemed unschedulable, thus Condition 1 from [16]
does not hold and so the test is not OPA-compatible.

5.3 OPA-compatible schedulability tests
The negative result above means that it is interesting to
investigate the performance of the OPA algorithm in com-
bination with weaker (i.e., sufficient) schedulability tests. In
this section, we derive a sufficient schedulability test that
can be used in combination with the OPA algorithm. In this
way, we can check whether in our case an optimal priority

assignment is able to make up for a weaker schedulability
test, for example by making comparisons with an exact test
assuming DM priority order.

Theorem 7. For each task ⌧

k

, an upper-bound on its response
time can be computed by first finding R

M

k

from the following
iterative relation, starting with R

M

k

= M

k

:

R

M

k

X

i2hep(k)

⇠
R

M

k

T

i

⇡
M

i

, (7)

and then using it in the following iterative relation:

R

C

k

 C

k

+

X

i2hp(k)

⇠
R

C

k

+min(R

M

k

�M

k

, D

i

� C

i

)

T

i

⇡
C

i

.

(8)

Proof. It is enough to show that (RM

k

�M
k

) and (D

i

�C
i

) are
both valid upper-bounds on R

M

i

. Indeed, by Equation (7)
we get:

R

M

k

�M

k

=

X

j2hp(k)

⇠
R

M

k

T

j

⇡
M

j

. (9)

As the right-hand side is non-negative and i < k, it follows
that:

R

M

k

�M

k

�
X

j2hep(i)

⇠
R

M

i

T

j

⇡
M

j

= R

M

i

. (10)

D

i

� C

i

is a valid upper-bound on R

M

i

as well because
by Equation (4) and the schedulability of ⌧

i

it follows that
R

i

= R

M

i

+R

C

i

 D

i

, and since C

i

 R

C

i

, we conclude that
R

M

i

 D

i

� C

i

.

In Section 6.3, we will experimentally evaluate the per-
formance of the proposed approaches to priority assign-
ment, along with the exact (Theorem 5) and sufficient (The-
orem 7) schedulability tests.

5.4 Different priorities for M- and C-phases
We now add a new degree of freedom to the priority
assignment problem by allowing different priorities for the
M- and C-phase of each task (so each task has two priorities
which are used for all of its jobs). In this new setting,
we need to consider different sets of higher-priority tasks
for the two phases. In particular, we define hp

M

(k) (resp.,
hp

C

(k)) as the set of tasks whose M-phase (resp., C-phase)
has priority higher than the M-phase (resp., C-phase) of
⌧

k

. Sets hep

M

(k) and hep

C

(k) are re-defined accordingly.
As a preliminary result, we show that the critical instant
scenario and, consequently, the exact schedulability analysis
described in Section 4 still hold when different static prior-
ities are assigned to the two phases. Theorem 8 generalizes
Theorem 4 to encompass this situation.

Theorem 8 (Critical Instant). The maximum response time of a
job J

k

of a task ⌧

k

in a fixed-priority M/C system is found when
all higher priority tasks ⌧

i

, i 2 hp

M

(k) [hp

C

(k) have:

1) a job8 completing its M-phase an infinitely small amount
of time earlier than the M/C point of J

k

;

8. Contrary to what stated in Theorem 4, this job cannot be referred
to as dual-interfering. This is only true whenever the interfering task
belongs to hpM (k) \ hpC(k).

2) all jobs released periodically;
3) a null M-phase for all (C-interfering) jobs released after

the M/C point of J
k

.

Proof. For any task ⌧

i

in hp

M

(k) [hp

C

(k), it may be that
either (i) ⌧

i

2 hp

M

(k) \ hp

C

(k); or (ii) ⌧

i

2 hp

M

(k) and
⌧

i

/2 hp

C

(k); or (iii) ⌧
i

/2 hp

M

(k) and ⌧

i

2 hp

C

(k).
In case (i), the result of Theorem 4 straightforwardly

applies. In case (ii), all jobs of ⌧
i

are M-interfering, but not C-
interfering. The configuration of Theorem 8 maximizes the
M-interfering contribution on J

k

by the result of Lemma 2.
Finally, in case (iii), all jobs of ⌧

i

are C-interfering, but not
M-interfering. However, if we let a job of ⌧

i

complete its
M-phase an infinitely small amount of time earlier than �

k

(despite not being M-interfering with J

k

), this will cause
the C-phase of such a job to be ready at the latest possible
instant. As subsequent instances are released as early as
possible, the result of Lemma 3 also holds under the critical
instant of Theorem 8, concluding the proof.

Based on the identified critical instant scenario, the fol-
lowing theorem trivially extends the exact schedulability
analysis of Theorem 5 to the case of different priorities for
the two phases of each M/C task ⌧

k

.

Theorem 9. In a fixed-priority system, the worst-case response
time of each constrained deadline M/C task ⌧

k

can be computed
as R

k

= R

M

k

+R

C

k

, where RM

k

is first found from the following
iterative relation, starting with R

M

k

= M

k

:

R

M

k

X

i2hep

M
(k)

⇠
R

M

k

T

i

⇡
M

i

, (11)

and then it is used in the following iterative relation to find R

C

k

,
starting with R

C

k

= C

k

:

R

C

k

 C

k

+

X

i2hp

C
(k)

⇠
R

C

k

+R

M

i

T

i

⇡
C

i

. (12)

We now show that assigning the same priority to the
two phases is not optimal, i.e., there are task-sets that are
unschedulable when the same priority is assigned to both
phases of each task, that become schedulable when different
priorities are assigned to the execution phases of some task.

Example 4. Consider the task-set described in Example 3. We
have shown previously that the task-set is schedulable in priority
order [⌧

2

, ⌧

1

, ⌧

3

]. Then, if we let D
1

= T

1

= 19 (instead of 20), ⌧
1

fails to meet its deadline and renders the task-set unschedulable.
However, if we assign the highest priority to the C-phase of ⌧

1

,
with the C-phase of task ⌧

2

at the second highest priority (leaving
the M-phase of task ⌧

2

still at the highest priority) then the task-
set becomes schedulable again. It can be easily checked that in this
case, under the critical instant scenario described by Theorem 8,
R

M

2

= 1, RC

2

= 10, R
2

= 11 24 for task ⌧

2

; RM

1

= 10,
R

C

1

= 1, R
1

= 11 19 for task ⌧

1

, and R

M

3

= 15, RC

3

= 16,
R

3

= 31 35 for task ⌧

3

. Hence, all tasks meet their deadlines.

Effectively, the above example just shows that schedula-
bility can be increased by lifting the assumption of a single
static priority assignment to both phases. However, much
stronger results can be drawn by rethinking Example 1
(used in Section 4 to show the sub-optimality of EDF) in
light of the new results derived in this section. In that

example (Figure 1b)), the priority of task ⌧

1

changes from
high to low when transitioning from its M- to its C-phase,
which makes the task-set become schedulable. Additionally,
the configuration in Figure 1b) corresponds to the critical
instant scenario described by Theorem 8, meaning that in
such a configuration both tasks experience their exact worst-
case response time. It directly follows that Example 1 can be
identically used to show that:

Corollary 1. No Fixed Task Priority (FTP) scheduling
policy where all jobs of the same task have a single priority
used for both M- and C-phases can be optimal;

Corollary 2. No Fixed Job Priority (FJP) scheduling
policy where every job has a single priority used for both
M- and C-phases can be optimal;

Corollary 3. FTP and FJP scheduling classes have a
speedup factor which is lower bounded by 2;

Corollary 4. Dynamic Priority (DP) scheduling, where
each job can change priority when transitioning from mem-
ory to computation phase, is necessary for optimality.

5.5 Two-phase priority assignment
The above results have demonstrated that a higher schedu-
lability performance can be achieved by allowing different
priorities for the M- and C-phase of each task. It now
remains to address the problem of how to select priorities for
the two phases. The correspondence between the analysis
for M/C tasks and that for classic tasks with jitter [7] iden-
tified in Section 4.2 allows us to extend the result in [62] to
the M/C scheduling model. Specifically, in [62] the authors
proved that in the case of jitter, priorities can be optimally
assigned according to increasing values of D

i

� J

i

, where
J

i

denotes the release jitter of task ⌧

i

. This is referred to
as Deadline minus Jitter Monotonic priority assignment. In
our case, the release jitter of the C-phase of task ⌧

i

is given by
the response time of its M-phase, i.e., RM

i

. Since the value
of RM

i

depends on the relative priority ordering of the M-
phases, to get an overall optimal priority assignment for
both M- and C-phases it would be required to exhaustively
try each combination of priorities for the M-phases, with
priorities for the C-phases then assigned according to the
corresponding values of D

i

� R

M

i

, until schedulability is
verified or all combinations have been tested. To reduce the
computational burden of a brute-force search, we propose to
allocate an intermediate deadline proportional to the work
that must be executed by task ⌧

i

in each phase. Similar
priority assignment heuristics have proven effective in the
context of multi-stage scheduling (e.g., [22]). More formally,
we propose to assign priorities to the two phases as follows:
for the M-phases, assign priorities by increasing values of
(D

i

· M
i

)/(C

i

+ M

i

); for the C-phases, assign priorities by
increasing values of D

i

� R

M

i

. Experimental evaluation in
Section 6 will demonstrate the effectiveness of the proposed
heuristic strategy in comparison with a brute-force search of
all possible priority orderings.

6 EXPERIMENTAL RESULTS

To provide an experimental characterization of the perfor-
mance improvement that may be obtained by adopting
the M/C task model, we conducted a set of experiments

applying the schedulability test proposed in Section 4 to
randomly generated M/C workloads scheduled with fixed-
priority on a single-core/single-memory setting. We then
compared the number of schedulable task-sets detected by
our test against classic approaches. Since the test is exact,
i.e., necessary and sufficient, the results may be used to infer
general properties of M/C sporadic task systems. In par-
ticular, we show that our approach efficiently exploits the
pipelining of memory and execution phases, determining a
significant schedulability improvement with respect to the
classic sequential execution model and existing approaches
for multi-stage systems. We then evaluate the priority as-
signment algorithms proposed in Section 5. Specifically, we
quantify the schedulability gap between a sub-optimal pri-
ority assignment in combination with an exact test and the
OPA algorithm in conjunction with a sufficient test. We also
evaluate the performance gain that can be attained when
different priorities may be assigned to the M- and C-phase
of each task. The tests compared have been implemented in
MATLAB R�, and the code is available online [37].

6.1 Task-set generation
The generation of each task ⌧

k

, k 2 {1, . . . , n}, is per-
formed as follows: (i) the sum V

k

def
= M

k

+ C

k

is uniformly
selected in the interval [10000, 1000000]; (ii) the worst-
case computation time C

k

is computed as
j

Vk
fmc+1

k
, where

f

mc

def
= M

k

/C

k

is the memory-to-computation ratio; (iii) the
worst-case memory access time M

k

is then computed as
V

k

� C

k

; (iv) the task utilization u

M

k

+ u

C

k

is generated
using UUnifast [12]; (v) the period T

k

is then calculated
as

l
Mk+Ck

u

M
k +u

C
k

m
; (vi) the relative deadline D

k

is uniformly
selected in the interval [M

k

+ C

k

, T

k

]. In our experiments,
three different schedulability tests based on response time
analysis have been compared: (i) the exact test of Theorem
5, referred to as RTA-MC; (ii) the test in [26] based on delay
composition (RTA-DC), restricted to the sub-case of fixed-
priority scheduling and two-stage jobs; (iii) the response
time analysis for classic sequential task systems given by
Theorem 3, referred to as RTA, taking E

k

= M

k

+ C

k

as
total execution time of the task. In the initial experiments,
Deadline Monotonic (DM) priority ordering is used. Priority
assignment is further explored in Section 6.3.

6.2 Schedulability results
In the first set of experiments, we varied the total utilization
of the task-set UT from 0.1 to 1.5, generating 10000 task-sets
for each value on the x-axis. Figure 4 shows the results with
n = 8 tasks, and a memory-to-computation ratio f

mc

se-
lected with log-uniform distribution in the interval [0.1, 10].
As can be seen, RTA-MC outperforms RTA, especially for
high values of UT , confirming that the pipelining of M-
and C-phases is highly beneficial in terms of schedulability.
For utilizations close to 0.9, the M/C model admits almost
50% of the generated task-sets, while the performance of
classic RTA drops below 10%. As a notable aspect, RTA-MC
is also able to schedule task-sets with UT > 1, which is
obviously not possible using the RTA approach. This large
performance gain is one of the main benefits brought by

the use of a pre-fetching execution model on a single-core
platform. The performance of RTA-DC is significantly lower
than RTA-MC at all utilization levels, and even lower than
RTA, due to the conservative way of estimating the delay
incurred by each execution stage.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Utilization

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−MC

RTA

RTA−DC

Figure 4: Experiments
varying UT , with f

mc

log-
uniformly distributed in
[0.1, 10], and n = 8.

−3 −2 −1 0 1 2 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

(M
k
/C

k
)

W
e

ig
h

te
d

 s
c
h

e
d

u
la

b
ili

ty

RTA−MC

RTA

RTA−DC

Figure 5: Weighted schedu-
lability as a function of f

mc

,
with n = 8, and implicit
deadlines.

We conducted other sets of experiments to observe how
the schedulability performance varies depending on the
value of the memory-to-computation ratio f

mc

and the
number of tasks in the system. Given the large design space
to explore, we adopted an aggregate performance metric
called weighted schedulability (see [11] for a definition).

Figure 5 reports in logarithmic scale the results of
weighted schedulability when the observed parameter was
the memory-to-computation ratio f

mc

, varied in the inter-
val [10

�3

, 10

3

], with n = 8. While the classic RTA test
is obviously not affected by variations in the memory-to-
computation ratio, the M/C test has a peculiar behavior.
Interestingly, when M

k

is almost equal to C

k

(i.e., f
mc

is
about 1, or, equivalently, log

10

(M

k

/C

k

) is around 0), the
M/C test admits all the task-sets. When instead the two
values are more unbalanced, the performance symmetrically
degrades, until asymptotically reaching the performance
of the completely sequential RTA. This intuitively means
that when the duration of the two phases is comparable,
the test can take full advantage of the pipelined execution
of M- and C-phases. The RTA-DC test exhibits the same
behavior as RTA-MC, since it can also take advantage of
such a pipelined execution, but reaches a significantly lower
schedulability performance due to the pessimism in the
delay estimation. Only for values of f

mc

close to 1, RTA-DC
reaches the performance of the sequential RTA. Although
Figure 5 refers to the implicit deadline case, we remark that
the same trend is also present in the constrained deadline
case, even if less evident due to the reduced slack available.

In the third set of experiments, we varied the number
of tasks n in the interval [2, 30], with f

mc

selected with
log-uniform distribution in [0.1, 10]. Figure 6 illustrates the
results for the implicit deadline case, while Figure 7 refers
to the constrained deadline case (i.e., relative deadlines are
uniformly selected in the interval [M

k

+C

k

, T

k

]). Under the
constrained deadline model, the performance of all the tests
degrades when n increases. However, when deadlines are
implicit, RTA-MC seems to take advantage of the smaller
granularity of the tasks (and relative M/C-phases) to obtain
a better pipelining of memory and computation, identifying
almost all generated task-sets as schedulable. RTA and RTA-
DC also reach a constant trend, but are able to schedule a
much smaller amount of task-sets (around 80% and 50%,

respectively). The experiment in Figure 8 better clarifies
how the performance of the tests varies depending on the
deadline model. Here, we vary the factor ↵

d

that controls
the portion of the interval where the relative deadline can
be selected. More specifically, for each value of ↵

d

, the
relative deadline D

k

of a task ⌧

k

is uniformly chosen in
[(M

k

+ C

k

) + d↵
d

(T

k

� (M

k

+ C

k

))e, T
k

]. In the extreme
case when ↵

d

= 0, the relative deadline is uniformly chosen
in [M

k

+C

k

, T

k

]; when instead ↵

d

= 1, all relative deadlines
are implicit (i.e., D

k

= T

k

for all tasks). The results show that
by increasing ↵

d

all tests perform significantly better due to
the larger slack available. The performance improvement
of RTA-MC is however much better, confirming the trend
observed in Figures 6 and 7.

6.3 Priority assignment results
6.3.1 Same priority for the two phases

We now present the results of our empirical investigation
on the priority assignment policies discussed in Section 5.
We first focus on the case in which the same priority is
assigned to both phases of each task. The priority assign-
ment strategies studied are: (i) Deadline Monotonic (DM)
in conjunction with the exact test of Theorem 5 (RTA-
DM-EXACT); (ii) Audsley’s OPA algorithm in conjunction
with the sufficient test of Theorem 7 (RTA-OPA-SUFF); (iii)
DM in conjunction with the sufficient test of Theorem 7
(RTA-DM-SUFF); (iv) Brute-force (BF) priority assignment,
which exhaustively tries each combination of priorities, in
conjunction with the exact test of Theorem 5 (RTA-BF).

Figure 9 illustrates the results of a set of experiments
where the number of schedulable task-set has been observed
as a function of the task-set utilization (varied in the interval
UT 2 [0.1, 1.5] in steps of 0.1). The memory-to-computation
ratio has been varied with log-uniform distribution in the
interval f

mc

2 [0.1, 10]. For each utilization value, 1000 task-
sets have been generated with n = 8. In the figures, the
performance gap between the exact test and the sufficient
test is quantified by the distance between RTA-DM-EXACT
and RTA-DM-SUFF. Also, the comparison between RTA-
DM-EXACT and RTA-OPA-SUFF shows that in our case
an optimal priority assignment is not enough to make up
for the weaker schedulability test. Interestingly, this is the
opposite trend with respect to the global fixed-priority case
in a multicore setting [16], where an appropriate (optimal)
choice of priority assignment, although combined with a
sufficient test, yields larger schedulability than an OPA-
incompatible tighter schedulability test combined with DM.
We also evaluated the potential performance of the exact
test with an exhaustive approach to priority assignment.
In particular, the actual schedulability loss due to a sub-
optimal priority assignment is given by the comparison
between RTA-BF and RTA-DM-EXACT. This gap is ex-
tremely small, revealing that, despite being sub-optimal,
DM gives extremely good performance in terms of admitted
task-sets. Specifically, in this set of experiments only 25
task-sets out of 15000 are deemed schedulable by RTA-BF
but not by RTA-DM-EXACT. In addition, the comparison
between RTA-BF and RTA-OPA-SUFF shows exactly how
much schedulability is lost due to a weaker test but optimal
priority assignment.

5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

W
e
ig

h
te

d
 s

ch
e
d
u
la

b
ili

ty

RTA−MC

RTA

RTA−DC

Figure 6: Experiments varying n,
with f

mc

log-uniformly distributed in
[0.1, 10], and implicit deadlines.

5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks

W
e
ig

h
te

d
 s

ch
e
d
u
la

b
ili

ty

RTA−MC

RTA

RTA−DC

Figure 7: Experiments varying n,
with f

mc

log-uniformly distributed in
[0.1, 10], and constrained deadlines.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α
d

W
e
ig

h
te

d
 s

ch
e
d
u
la

b
ili

ty

RTA−MC

RTA

RTA−DC

Figure 8: Experiments varying ↵

d

,
with f

mc

log-uniformly distributed in
[0.1, 10], and n = 8.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

900

Utilization

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−BF

RTA−DM−EXACT

RTA−OPA−SUFF

RTA−DM−SUFF

Figure 9: Evaluation of different prior-
ity assignments, n = 8 and f

mc

log-
uniformly distributed in [0.1, 10].

0.2 0.4 0.6 0.8 1 1.2 1.4
0

100

200

300

400

500

600

700

800

900

1000

Utilization

N
u
m

b
e
r

o
f
sc

h
e
d
u
la

b
le

 t
a
sk

−
se

ts

RTA−BF−dp

RTA−HEUR−dp

RTA−BF−sp

RTA−DM−EXACT

Figure 10: Evaluation of different pri-
ority assignments, n = 8 and f

mc

log-
uniformly distributed in [0.1, 10].

0 0.5 1 1.5 2 2.5 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

max|log
10

(M
k
 / C

k
)|

W
e
ig

h
te

d
 s

ch
e
d
u
la

b
ili

ty

RTA−BF−dp

RTA−HEUR−dp

RTA−BF−sp

RTA−DM−EXACT

Figure 11: Evaluation of different pri-
ority assignments, n = 8 and f

mc

log-
uniformly distributed in [10

�x

, 10

x

].

6.3.2 Different priorities for the two phases

We now extend our evaluation study to the case of different
priorities for the two phases of each task, discussed in
Sections 5.4 and 5.5. To quantify the schedulability improve-
ment obtainable when different priorities are allowed for the
two phases, we measured the number of schedulable task-
sets as a function of UT and examined the following priority
assignment strategies: (i) RTA-BF-dp: brute-force priority
assignment with two degrees of freedom (which tries each
combination of priorities for the first phase and then applies
D

i

� R

M

i

to the second phase, as explained in Section 5.5),
in combination with the exact test of Theorem 9; (ii) RTA-
HEUR-dp: heuristic priority assignment proposed in Sec-
tion 5.5 in combination with the exact test of Theorem 9;
(iii) RTA-BF-sp: brute-force priority assignment (assuming
the same priority for both phases) with the exact test of
Theorem 5; (iv) RTA-DM-EXACT: DM over both phases
with the exact test of Theorem 5.

Figure 10 reports the results for the case of n = 8, f
mc

selected with log-uniform distribution in [0.1, 10] and UT
varied in the interval [0.1, 1.5] in steps of 0.1. The compar-
ison between RTA-BF-dp and RTA-BF-sp exactly quantifies
the schedulability improvement obtainable when (possibly
different) priorities are optimally assigned to the two phases
of each task. Also, while a negligible schedulability loss is
observed between RTA-DM-EXACT and RTA-BF-sp, a more
significant gap exists between RTA-HEUR-dp and RTA-BF-
dp, mainly due to the sub-optimal priority assignment to the
M-phase of each task (see Section 5.5). Specifically, in this ex-
periment 436 task-sets out of 15000 are deemed schedulable
by RTA-BF-dp but not by RTA-HEUR-dp. To complement
the results in Figure 10, we explore how the performance

of the different priority assignment strategies changes with
an increasing range of values from which M

k

and C

k

can
be chosen. In particular, we select the value of f

mc

from a
log-uniform distribution in the range [10

�x

, 10

x

]. The value
of x is varied from 0 to 3 in steps of 0.25 to produce the
weighted schedulability graph in Figure 11. Observing the
distance between the first two curves (RTA-BF-dp and RTA-
HEUR-dp) and the second two curves (RTA-BF-sp and RTA-
DM-EXACT), we conclude that the improvement allowing
different priorities for the two phases slightly increases with
increasing x. Intuitively, this is because the need for two
priorities per task is most acute when some tasks have a
relatively long M-phase and others have a relatively long C-
phase, thus allowing the disparate phases to be overlapped.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we took a further step towards the analyt-
ical characterization of predictable policies to co-schedule
both memory and processing resources, considering sets
of sporadic M/C tasks executing on a single-core/single-
memory setting. We showed that existing results for classic
task models are not applicable to the considered task model.
In particular, we showed that no fixed task priority or
fixed job priority scheduling algorithm has a speedup factor
of less than 2 compared to an optimal algorithm for the
M/C scheduling problem. Further we proved that the exact
speedup factor for EDF is 2. For fixed priority scheduling,
we showed that the synchronous arrival sequence does not
necessarily result in the longest response times for M/C
tasks, and therefore is not a critical instant. We derived a
critical instant configuration and based on this result we

developed a necessary and sufficient schedulability anal-
ysis that computes the exact worst-case response time of
each task, with a pseudo-polynomial complexity. We also
investigated the problem of priority assignment for the
M/C scheduling model. We discussed the applicability of
existing results and studied the performance of different
priority assignment algorithms, considering both the same
and distinct priorities for the two phases of each task. We
also extended our exact response time analysis to distinct
priorities per phase of each task, enabling the derivation
of optimality conditions for the M/C scheduling problem.
Finally, we showed by extensive experiments that significant
performance improvements may be obtained leveraging a
pipelined execution of M- and C-phases, efficiently hiding
the memory latency and improving schedulability. These
results show the great potential of pre-fetching execution
models, providing an important building block towards the
design of predictable multi-core systems that are able to
efficiently harmonize the provisioning of instruction/data
to computing units, with a limited memory interference. As
future work, we plan to study the impact of pre-fetching
techniques on industrial real-time systems, implementing
efficient co-scheduling algorithms in platforms featuring
multiple cores and memory channels. We expect that further
significant improvements may be obtained by exploiting
burst read/write features to decrease the length of memory
phases of M/C tasks. We also intend to integrate the M/C
model with the limited preemption scheduling framework,
to avoid a task being preempted once its context has been
loaded to local memory. Finally, we aim to tackle differ-
ent problems that remain open in this paper, such as the
generalization to multi-phase tasks, and the extension to
partitioned and global multiprocessor scheduling.

ACKNOWLEDGMENTS
This work has been supported by the European Commission
through the HERCULES project (H2020/ICT/2015/688860), by the
Inria International Chair program and by the ESPRC grant, MCC
(EP/K011626/1). EPSRC Research Data Management: No new primary
data was created during this study.

REFERENCES
[1] A. Alhammad and R. Pellizzoni. Schedulability analysis of global

memory-predictable scheduling. In EMSOFT, 2014.
[2] A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global

scheduling of real-time tasks. In RTAS, 2015.
[3] S. Altmeyer, R. Davis, and C. Maiza. Improved cache related pre-

emption delay aware response time analysis for fixed priority pre-
emptive systems. Real-Time Systems Journal, 48(5):499–526, 2012.

[4] S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. On the effec-
tiveness of cache partitioning in hard real-time systems. Springer
Real-Time Systems Journal, pages 1–46, 2016.

[5] N. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Technical report YCS 164,
Dept. Computer Science, University of York, UK, July 1991.

[6] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[8] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-
time scheduling: the deadline-monotonic approach. In RTOSS,
1991.

[9] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-aware
scheduling of multicore task sets for real-time systems. In RTCSA,
2012.

[10] S. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In RTSS, 1990.

[11] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related
preemption and migration delays: empirical approximation and
impact on schedulability. In OSPERT, 2010.

[12] E. Bini and G. C. Buttazzo. Measuring the performance of schedu-
lability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[13] A. Burns and S. K. Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[14] G. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive
scheduling for real-time systems: a survey. IEEE Transactions on
Industrial Informatics, 9(1):3–15, 2013.

[15] B. Chen. Analysis of classes of heuristics for scheduling a two-
stage flow shop with parallel machines at one stage. Journal of the
Operational Research Society, 46(2):234–244, 1995.

[16] R. Davis and A. Burns. Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time
systems. Real-Time Systems Journal, 47(1):1–40, 2010.

[17] R. Davis, A. Burns, S. Baruah, T. Rothvoss, L. George, and O. Get-
tings. Exact comparison of fixed priority and EDF scheduling
based on speedup factors for both pre-emptive and non-pre-
emptive paradigms. Real-Time Systems, 51(5):566–601, 2015.

[18] R. I. Davis, T. Rothvoß, S. K. Baruah, and A. Burns. Exact
quantification of the sub-optimality of uniprocessor fixed priority
pre-emptive scheduling. Real-Time Systems, 43(3):211–258, 2009.

[19] R. I. Davis, A. Thekkilakattil, O. Gettings, R. Dobrin, and S. Pun-
nekkat. Quantifying the exact sub-optimality of non-preemptive
scheduling. In RTSS, 2015.

[20] M. Dertouzos. Control robotics: the procedural control of physical
processes. Information Processing, 74, 1974.

[21] J. Deverge and I. Puaut. WCET-directed dynamic scratchpad
memory allocation of data. In ECRTS, 2007.

[22] J. Garcia and M. Harbour. Optimized priority assignment for tasks
and messages in distributed hard real-time systems. In PDRTSW,
1995.

[23] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A framework
for modular analysis and exploration of heterogeneous embedded
systems. Real-Time Systems Journal, 33(1-3):101–137, 2006.

[24] J. Hennessy and D. Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

[25] J. Hoogeveen, J. Lenstra, and B. Veltman. Preemptive scheduling
in a two-stage multiprocessor shop is NP-hard. European J. Oper.
Res., 89:172–175, 1996.

[26] P. Jayachandran and T. Abdelzaher. A delay composition theorem
for real-time pipelines. In ECRTS, 2007.

[27] P. Jayachandran and T. Abdelzaher. Reduction-based schedulabil-
ity analysis of distributed systems with cycles in the task graph.
Real-Time Systems Journal, 46(1):121–151, 2010.

[28] S. Johnson. Optimal two- and three-stage production schedules
with setup times included. Naval Res. Logist. Q., 1:61–68, 1954.

[29] M. Joseph and P. Pandya. Finding response times in a real-time
system. The Computer Journal, 29(5):390–395, 1986.

[30] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. Journal of ACM, 47(4):617–643, July 2000.

[31] J. Krakora, L. Waszniowski, P. Pisa, and Z. Hanzalek. Timed au-
tomata model for component-based real-time systems. In WFCS,
2004.

[32] J. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evaluation,
2(4):237–250, 1982.

[33] C. Liu and J. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for
Computing Machinery, 20(1):46–61, 1973.

[34] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P. Yew, and D. Chen.
The performance of runtime data cache prefetching in a dynamic
optimization system. In MICRO, 2003.

[35] R. Mancuso, R. Dudko, and M. Caccamo. Light-prem: Automated
software refactoring for predictable execution on cots embedded
system. In RTCSA, 2014.

[36] A. Marongiu and L. Benini. An openMP compiler for efficient use
of distributed scratchpad memory in mpsocs. IEEE Transactions on
Computers, 61(2):222–236, 2012.

[37] A. Melani. A MATLAB R� implementation of schedulability tests
for memory-processor co-scheduling in fixed priority systems.
http://retis.sssup.it/%7Eal.melani/downloads/MC.zip, 2015.

[38] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo. Memory-processor co-scheduling in fixed priority
systems. In RTNS, 2015.

[39] A. Melani, R. Mancuso, D. Cullina, M. Caccamo, and L. Thiele.
Speed optimization for tasks with two resources. In DATE, 2016.

[40] M. D. Natale and J. A. Stankovic. Dynamic end-to-end guarantees
in distributed real time systems. In RTSS, 1994.

[41] J. C. Palencia and M. Harbour. Offset-based response time analysis
of distributed systems scheduled under EDF. In ECRTS, 2003.

[42] J. C. Palencia and M. G. Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In RTSS, 1998.

[43] J. C. Palencia and M. G. Harbour. Exploiting precedence relations
in the schedulability analysis of distributed real-time systems. In
RTSS, 1999.

[44] R. Pellizzoni, E. Betti, S. Bak, J. Criswell, M. Caccamo, and R. Keg-
ley. A predictable execution model for COTS-based embedded
systems. In RTAS, 2011.

[45] R. Pellizzoni and G. Lipari. Holistic analysis of asynchronous
real-time transactions with earliest deadline scheduling. Journal
of Computer and System Sciences, 73(2):186–206, 2007.

[46] I. Puaut and C. Pais. Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison. In DATE, 2007.

[47] R. Rajkumar, L. Sha, and J. P. Lehoczky. On countering the effects
of cycle-stealing in a hard real-time environment. In RTSS, 1987.

[48] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimiza-
tion for predictable implementation of real-time applications on
multiprocessor systems-on-chip. In RTSS, 2007.

[49] P. Schuurman and G. J. Woeginger. A polynomial time approxima-
tion scheme for the two-stage multiprocessor flow shop problem.
Theor. Comput. Sci., 237(1-2):105–122, 2000.

[50] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some
practical problems in prioritized preemptive scheduling. In RTSS,
1986.

[51] B. Sprunt, D. Kirk, and L. Sha. Priority-driven, preemptive I/O
controllers for real-time systems. In ISCA, 1988.

[52] M. Spuri. Holistic analysis for deadline scheduled real-time
distributed systems. Technical report RR-2873, INRIA, 1996.

[53] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In ISCAS, 2000.

[54] K. Tindell, A. Burns, and A. Wellings. An extendible approach
for analyzing fixed priority hard real-time tasks. Real-Time Systems
Journal, 6(2):133–151, 1994.

[55] K. Tindell and J. Clark. Holistic schedulability analysis for dis-
tributed hard real-time systems. Microprocessing and Microprogram-
ming, 40(2):117–134, 1994.

[56] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared
caches more predictable on multicore platforms. In ECRTS, 2013.

[57] S. Wasly and R. Pellizzoni. A dynamic scratchpad memory unit
for predictable real-time embedded systems. In ECRTS, 2013.

[58] S. Wasly and R. Pellizzoni. Hiding memory latency using fixed
priority scheduling. In RTAS, 2014.

[59] J. Whitham and N. C. Audsley. Explicit reservation of local mem-
ory in a predictable, preemptive multitasking real-time system. In
RTAS, 2012.

[60] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time
Systems Journal, 48(6):681–715, 2012.

[61] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto.
Survey of scheduling techniques for addressing shared resources
in multicore processors. ACM Comput. Surv., 45(1):4, 2012.

[62] A. Zuhily and A. Burns. Optimal (D - J) monotonic priority
assignment. Information Processing Letters, 103(6):247–250, 2007.

