
HAL Id: hal-01556802
https://inria.hal.science/hal-01556802

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Schedulability Analysis of Conditional Parallel Task
Graphs in Multicore Systems

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto
Marchetti-Spaccamela, Giorgio Buttazzo

To cite this version:
Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Giorgio But-
tazzo. Schedulability Analysis of Conditional Parallel Task Graphs in Multicore Systems. IEEE
Transactions on Computers, 2017, 66 (2), pp.339-353. �10.1109/TC.2016.2584064�. �hal-01556802�

https://inria.hal.science/hal-01556802
https://hal.archives-ouvertes.fr

Schedulability Analysis of Conditional Parallel
Task Graphs in Multicore Systems

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci,
Alberto Marchetti-Spaccamela, and Giorgio Buttazzo

Abstract—Several task models have been introduced in the literature to describe the intrinsic parallelism of real-time activities,
including fork/join, synchronous parallel, DAG-based, etc. Although schedulability tests and resource augmentation bounds have been
derived for these task models in the context of multicore systems, they are still too pessimistic to describe the execution flow of parallel
tasks characterized by multiple (and nested) conditional statements, where it is hard to decide which execution path to select for
modeling the worst-case scenario. To overcome this problem, this paper proposes a task model that integrates control flow information
by considering conditional parallel tasks (cp-tasks) represented by DAGs with both precedence and conditional edges. For this task
model, a set of meaningful parameters are identified and computed by efficient algorithms and a response-time analysis is presented
for different scheduling policies. Experimental results are finally reported to evaluate the efficiency of the proposed schedulability tests
and their performance with respect to classic tests based on both conditional and non-conditional existing approaches.

Index Terms—Parallel scheduling, DAG Tasks, Response-Time Analysis, Multiprocessor Systems, Real-Time Systems.

1 INTRODUCTION

THe availability of multi-/many-core platforms in the
embedded market [1], [2], [3], caused an increasing

interest for applications with both high-performance and
real-time requirements. Following the same trend, several
classic schedulability results have been extended to com-
ply with such new platforms, providing new models and
tests to guarantee the timing requirements of parallel task
systems. Examples of the task models proposed to capture
the parallel structure of an application include the fork/join
model [21], the synchronous parallel task model [30], and
the DAG-based task model [11]. Each of these models di-
vides a task into smaller computational units, called sub-
tasks, which can run simultaneously on different cores.

As noted by Fonseca et al. [20], the problem intro-
duced by conditional statements is particularly significant
in the schedulability analysis of parallel tasks running on
a multicore system, although explicitly modeling branch-
ing structures has been proven useful also for single-core
systems to tighten the response time of the tasks [5],
[8], [17]. The problem is exacerbated by the presence of
multiple conditional statements characterized by branches
with very different length. For example, different image
processing, object detection/tracking and feature extraction
algorithms are characterized by conditional branches with
variable sizes. As an example, hierarchical clustering [22]
and cascade classifiers [34] are techniques where clusters of
pixels are conditionally split/merged depending on image

• A. Melani and G. Buttazzo are with the TeCIP Institute, Scuola Superiore
Sant’Anna, Pisa, Italy. E-mail: {alessandra.melani, g.buttazzo}@sssup.it.

• M. Bertogna is with the University of Modena and Reggio-Emilia,
Modena, Italy. E-mail: marko.bertogna@unimore.it.

• V. Bonifaci is with Istituto di Analisi dei Sistemi ed Informatica, CNR,
Rome, Italy. E-mail: vincenzo.bonifaci@iasi.cnr.it.

• A. Marchetti-Spaccamela is with Sapienza University of Rome, Rome,
Italy. E-mail: alberto@dis.uniroma1.it.

features. An efficient implementation of such techniques on
a parallel architecture would need to conditionally fork a
variable number of parallel sub-tasks depending on runtime
information. As a result, the response-time of such a task, as
well as its interference on the other tasks, may vary sig-
nificantly from instance to instance. Therefore, identifying
the worst-case scenario that affects system schedulability the
most is a challenging issue.

An example of parallel task T0 specified according to the
OpenMP standard is illustrated in Figure 1. The task has
a conditional statement at the beginning of its execution.
Depending on the conditional clause, the task can take the
upper branch, creating a sequential sub-task τ1 of 10 time
units, or the lower branch, forking three sub-tasks τ2, τ3, τ4
of 6 time units each. Note that the branch leading to the
worst-case response-time depends on the number of cores
and the interference from other tasks. For example, with
three or more cores and no interfering tasks, the largest
response-time is given by the upper branch, for every work-
conserving scheduler1 (i.e., 10 time units instead of 6). With
fewer cores, the largest response-time is given by the lower
branch (i.e., 12 time units with two cores, and 18 time units
with one core). If interfering tasks are present, the situation
is even more challenging, because the conclusions derived
above may be reversed! For example, adding a sequential
task of 6 time-units, the worst-case response-time with three
cores is given by the lower branch (12 units instead of 10).

Similarly, it is not easy to predict which branch imposes
a larger interference on the other tasks: depending on the
characteristics of the other tasks, a higher interference may
be produced by a set of parallel sub-tasks or by a longer
sequential sub-task. Since applications typically consists
of several nested conditional statements, the problem of

1. A scheduler is work-conserving if it never idles a core whenever
there is pending workload to execute.

#pragma omp parallel num_threads(N) {
#pragma omp master {
#pragma omp task { // τ0
if (condition) {
#pragma omp task { // τ1 }

}
else {
#pragma omp task { // τ2 }
#pragma omp task { // τ3 }
#pragma omp task { // τ4 }

}}}}

if (cond) { … }
else { … }

10

6

6

6

T1

T2

T3

T4

Figure 1: A parallel program with conditional execution.

mapping parallel applications to a task model that does not
explicitly consider conditional statements is very difficult to
solve.

1.1 Contributions and paper organization

This paper extends the parallel DAG model by integrating
conditional constructs to provide a tighter analysis to paral-
lel task systems. In the proposed conditional parallel task (cp-
task) model, each task is represented by a DAG containing
both parallel and conditional nodes. To capture the structure
of parallel applications, a formal definition of cp-task is
provided by specifying the possible connections between
the various (conditional and non-conditional) sections of
the graph. For the cp-task model, efficient ways to compute
an upper-bound on the response-time of each cp-task are
derived using different global scheduling algorithms. The
effectiveness of the proposed schedulability analysis is as-
sessed by extensive experiments. The paper also shows that
the proposed response-time analysis can be efficiently ap-
plied to non-conditional task models (such as the DAG task
model [11]). For these latter systems, experimental results
show that a significantly higher number of schedulable task-
sets is detected at a considerably smaller time complexity,
with respect to existing approaches.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Sections 3 introduces the
proposed task model and the notation used throughout the
paper. Section 4 characterizes the critical interference among
tasks, while in Section 5 we present our response-time anal-
ysis and describe how to compute certain task parameters
of interest. Section 6 presents a realistic case study, and then
reports our experimental results. The conclusions are drawn
in Section 7.

2 RELATED WORK

Several parallel task models have been proposed in the real-
time literature, although most of them are limited to non-
conditional execution modes. One of the first proposals, the
fork-join task model, was introduced by Lakshmanan, Kato
and Rajkumar [7], [21]. In this model, a task is represented
as an alternating sequence of sequential and parallel seg-
ments, and every parallel segment has the same degree of
parallelism (which is constrained to be less than or equal
to the number of available processors). A natural exten-
sion of this approach is the synchronous parallel model [6],
[18], [26], [27], [30], allowing consecutive parallel segments
and an arbitrary degree of parallelism of every segment.
Synchronization is still enforced at the boundary of each

segment, in the sense that a sub-task in the new segment
may start only after all the sub-tasks in the previous segment
have completed. A more flexible model of concurrency is
the DAG model, where a task is represented by a directed
acyclic graph (DAG) in which nodes are sequential sub-
tasks and arcs represent precedence constraints between
sub-tasks [9], [11], [15], [23], [24], [25], [29], [31].

The first attempts at enriching a parallel task model
with control-flow information were proposed in the con-
text of uniprocessor systems to provide a more accurate
characterization of the worst-case behavior of a task [5],
[8], [17]. In a multicore setting, Fonseca et al. [20] proposed
the multi-DAG model, which represents a parallel task as a
collection of DAGs, each representing a different execution
flow. The authors proposed a method to combine such flows
into a single synchronous parallel task that preserves the
execution requirements and the precedence constraints of
all the execution flows that can possibly occur at runtime,
thus reducing the schedulability problem to a simpler prob-
lem for synchronous parallel tasks. A disadvantage of this
approach is that it is not scalable with respect to the number
of sub-tasks, since the number of different flows through
a DAG can be exponential in the number of nodes. More-
over, it adds pessimism in the task transformation process
and requires server-based synchronization mechanisms that
may be difficult to implement.

The accounting of control flows is common in the field
of static program analysis. When detailed control flow infor-
mation is available, accurate approaches exist that explicitly
detect and discard infeasible execution paths, based on the
boolean properties tested inside the conditionals. However,
infeasible path detection is a difficult problem that in general
requires high-complexity machinery, such as the solution
of (NP-hard) Satisfiability Modulo Theory instances [14].
Our work, instead, focuses on reasonably fast (at the very
least, pseudopolynomial-time) algorithms for schedulability
analysis of conditional parallel tasks.

The same conditional parallel task model proposed in
this paper was considered by Baruah et al. [10]. How-
ever, the authors focused on global Earliest Deadline First
(G-EDF) scheduling, proposing an efficient algorithm that
transforms any conditional DAG task into a non-conditional
DAG task that is “equivalent”, in the sense that it preserves
the quantities used by the existing tests for DAG tasks
without conditional statements [11], [15]. An important
difference with our approach is that our analysis method
can be applied to any work-conserving scheduler.

Most recently, Baruah [10] extended the federated
scheduling paradigm to systems of conditional parallel
tasks.

3 SYSTEM MODEL AND DEFINITIONS

This paper considers a set T = {τ1, . . . , τn} of n sporadic
conditional parallel tasks (cp-tasks) that execute upon a
platform consisting of m identical processors. Each cp-task
τk releases a potentially infinite sequence of jobs. Each job
of τk is separated from the next by at least Tk time-units and
has a constrained relative deadline Dk ≤ Tk (Dk, Tk ∈ N).
Moreover, each cp-task τk is represented as a directed acyclic
graph Gk = (Vk, Ek), where Vk = {vk,1, . . . , vk,nk

} is a

set of nodes (or vertices) and Ek ⊆ Vk × Vk is a set of
directed arcs (or edges), as shown in Figure 2. Each node
vk,j ∈ Vk represents a sequential chunk of execution (or
“sub-task”) and is characterized by a worst-case execution
time Ck,j ∈ N. Preemption/migration overheads and cross-
core interference (caused by contention for shared hardware
components, such as shared caches, memory buses, etc.) are
considered to be negligible. In addition, we assume that cp-
tasks do not engage in any synchronization. Arcs represent
dependencies between sub-tasks, that is, if (vk,1, vk,2) ∈ Ek,
then vk,1 must complete before vk,2 can start executing. A
node with no incoming arcs is referred to as a source, while a
node with no outgoing arcs is referred to as a sink. Without
loss of generality, each cp-task is assumed to have exactly
one source vsource

k and one sink node vsink
k . If this is not the

case, a dummy source/sink node with zero WCET can be
added to the DAG, with arcs to/from all the source/sink
nodes. The subscript k in the parameters associated to the
task τk is omitted whenever the reference to the task is clear
in the discussion.

In the cp-task model, nodes can be of two types: a)
regular nodes, represented as rectangles, allow all successor
nodes to be executed concurrently; b) conditional nodes,
coming in pairs and denoted by diamonds and circles,
represent the beginning and the end of a conditional con-
struct, respectively, and require the execution of exactly one
node among the successors of the start node. The structure
of allowed cp-task graphs is formalized in the following
recursive definition.

Definition 3.1. A cp-task graph G with source v′ and sink v′′ is
either:

1) (Base case) A (regular) node v, with v = v′ = v′′;
2) (Concurrent composition) A single-source, single-

sink DAG obtained from node-disjoint cp-task graphs
G1, . . . , Gq (with v′ the source of G1, v′′ the sink of
Gq , q ≥ 1) by adding one or more arcs from every sink
v′′i (i = 1, . . . , q − 1) to a source v′j with j > i;

3) (Conditional composition) A single-source, single-
sink DAG obtained from node-disjoint cp-task graphs
G1, . . . , Gq and from two (conditional) nodes v′, v′′ by
adding an arc from v′ to each source v′i and from each sink
v′′i to v′′ (i = 1, . . . , q); in this case, (v′, v′′) is called a
conditional pair and each Gi a conditional branch.

Example. Figure 2 illustrates a sample cp-task consisting
of nine sub-tasks (nodes) V = {v1, . . . , v9} and twelve
precedence constraints (arcs). The number inside each node
represents its WCET. Two of the nodes, v2 and v6, form a
conditional pair, meaning that only one sub-task between
v3 and v4 will be executed (but never both), depending
on a conditional clause. To see why the graph in Figure 2
satisfies the definition of a cp-task graph, one can reason
as follows. The two regular nodes v3 and v4 fit the base
case of the definition; each of them forms a cp-task graph.
We conditionally compose them with the conditional pair
(v2, v6) to form a cp-task graph H on nodes v2, v3, v4, v6
(with source v2 and sink v6). Each other regular node (v1,
v5, v7, v8, v9) is also a cp-task graph; call Gi the graph
corresponding to vi for i ∈ {1, 5, 7, 8, 9}. Finally, we apply
concurrent composition to the sequence G1, G5, H , G7, G8,

1 0

1
4

3

1

1

2

v1

v2

v3

v4

v5

v6 v7

v9

1
v8

Figure 2: A sample cp-task. Each vertex is labeled with the
WCET of the corresponding sub-task.

G9 to obtain the cp-task graph in Figure 2. In particular,
arcs representing precedence constraints are added from G1

to G5 and H , from G5 and H to G7 and G8, and from G7

and G8 to G9.
We also define a chain or path of a cp-task τk as

a sequence of nodes λ = (vk,a, . . . , vk,b) such that
(vk,j , vk,j+1) ∈ Ek, ∀j ∈ [a, b). The length of a chain of
τk, denoted by len(λ), is the sum of the WCETs of all its
nodes, that is,

∑b
j=a Ck,j . A longest path of a cp-task is any

source-sink path of the task that achieves the longest length.

Definition 3.2. The length of a cp-task τk, denoted by Lk, is the
length of any longest path of τk.

Note that Lk also represents the minimum worst-case
execution time of cp-task τk, that is, the time required to
execute it when the number of processing units is suffi-
ciently large (potentially infinite) to allow the task to always
execute with maximum parallelism. A necessary condition
for the feasibility of a cp-task τk is thus Lk ≤ Dk.

In the absence of conditional branches, the classical
sporadic DAG task model defines the volume of the task
as the worst-case execution time needed to complete it on
a dedicated single-core platform [11], [15], [23], [31]. This
quantity can be computed as the sum of the WCETs of
all the sub-tasks, that is

∑
vk,j∈Vk

Ck,j . In the presence of
conditional branches, assuming that all sub-tasks are always
executed is overly pessimistic. Hence, the concept of volume
of a cp-task is generalized by introducing the notion of
worst-case workload. Section 5.3 explains in detail how the
worst-case workload of a task can be computed efficiently.

Definition 3.3. The worst-case workload Wk of a cp-task τk
is the maximum time needed to execute an instance of τk on
a dedicated single-core platform, where the maximum is taken
among all possible choices of conditional branches.

The utilization Uk of a cp-task τk is the ratio between its
worst-case workload and its period, that is, Uk = Wk/Tk.
For the task-set T , its total utilization is defined as UT =∑n
i=1 Ui. A simple necessary condition for feasibility is

UT ≤ m.
In the example of Figure 2, the length (longest path) is

L = 8, and is given by the chain (v1, v2, v4, v6, v7, v9). Its
volume is 14 units, while its worst-case workload must take
into account that either v3 or v4 are executed at every task
instance. Since v4 corresponds to the branch with the largest
workload, W = 11.

Table 1: Notation

T set of cp-tasks n number of tasks in T
τk k-th task of T Dk relative deadline of τk
Tk period of τk Gk DAG associated to τk
Vk node set of Gk Ek arc set of Gk
vk,j jth sub-task of τk Ck,j WCET of vk,j
Lk length of τk’s longest

chain
Wk worst-case workload of

τk
λ∗k critical chain of Gk Uk utilization of τk

The notation used throughout the paper is summarized
in Table 1.

4 CRITICAL INTERFERENCE OF CP-TASKS

This section presents a schedulability analysis for cp-tasks
globally scheduled by any work-conserving scheduler. The
analysis is based on the notion of interference. In the existing
literature for globally scheduled sequential task systems, the
interference on a task τk is defined as the sum of all intervals
in which τk is ready, but cannot execute because all cores
are busy executing other tasks. We modify this definition to
adapt it to the parallel nature of cp-tasks, by introducing the
concept of critical interference [18], [26].

Fix a set of cp-tasks T and a work-conserving scheduler.
The first useful notion is that of a critical chain of a task.

Definition 4.1. The critical chain λ∗k of a cp-task τk is the chain
of nodes of τk that leads to its worst-case response-time Rk (in
case of ties, fix one such chain arbitrarily).

The critical chain of cp-task τk is in principle determined
by taking the sink vertex vsink

k of the worst-case instance
of τk (i.e., the job of τk that has largest response-time in
the worst-case scenario), and recursively pre-pending the
last to complete among the predecessor nodes (whether
conditional or not), until the source vertex vk,1 has been
included in the chain. A critical node of task τk is a node that
belongs to τk’s critical chain. Since the response-time of a cp-
task is given by the response-time of the sink vertex of the
task, the sink node is always a critical node. For deriving
the worst-case response-time of a task, it is then sufficient
to characterize the maximum interference suffered by its
critical chain.

Definition 4.2. The critical interference Ik on task τk is defined
as the cumulative time during which some critical nodes of the
worst-case instance of τk are ready, but do not execute because all
cores are busy.

Lemma 4.1. Given a set of cp-tasks T scheduled by any work-
conserving algorithm on m identical processors, the worst-case
response-time Rk of each task τk satisfies

Rk ≤ len(λ∗k) + Ik. (1)

Proof. Let rk be the release time of the worst-case instance
of τk. In the scheduling window [rk, rk + Rk], the critical
chain requires at most len(λ∗k) time-units to complete. By
Definition 4.2, at any time in this window in which τk
does not suffer critical interference, some node of the critical
chain is executing. Therefore Rk − Ik ≤ len(λ∗k).

The difficulty in using Equation (1) for schedulability
analysis is that the term Ik may not be easy to compute.
An established solution is to express the total interfering
workload as a function of individual contributions of the
interfering tasks, and then upper-bound such contributions
with the worst-case workload of each interfering task τi.
In the following, we explain how such interfering contribu-
tions can be computed, and how they relate to each other to
determine the total interfering workload.

Definition 4.3. The critical interference Ii,k imposed by task
τi on task τk is defined as the cumulative workload executed by
sub-tasks of τi while a critical node of the worst-case instance of
τk is ready to execute but is not executing.

Lemma 4.2. For any work-conserving algorithm, the following
relation holds:

Ik =
1

m

∑
τi∈T

Ii,k. (2)

Proof. By the work-conserving property of the scheduling
algorithm, whenever a critical node of τk is interfered, all m
cores are busy executing other sub-tasks. The total amount
of workload executed by sub-tasks interfering with the
critical chain of τk is then mIk. Hence,

∑
τi∈T Ii,k = mIk,

and by reordering the terms, the lemma follows.

Note that when i = k, the critical interference Ik,k may
include the interfering contributions of non-critical sub-
tasks of τk on itself, that is, the self-interference of τk.

By combining Equations (1) and (2), the response-time of
a task τk can be bounded as

Rk ≤ len(λ∗k) +
1

m
Ik,k +

1

m

∑
τi∈T ,i6=k

Ii,k. (3)

5 RESPONSE-TIME ANALYSIS

In this section we derive an upper-bound on the worst-case
response-time of each cp-task using Equation (3). To this aim
we need to bound the interfering contributions Ii,k. In the
sequel, we first consider the inter-task interference (i 6= k)
and then the intra-task interference (i = k).

5.1 Inter-task interference
We follow the approach adopted in [12], [26], that divides
the contribution to the workload of an interfering task τi in
a window of interest between carry-in, body, and carry-out
jobs. The carry-in job is the first instance of τi that is part
of the window of interest and has release time before and
deadline within the window of interest. The carry-out job is
the last instance of τi executing in the window of interest,
having a deadline after the window of interest. All other
instances of τi are named body jobs.

For sequential task-sets, an upper-bound on the work-
load of an interfering task τi within a window of length L
occurs when the first job of τi starts executing as late as
possible (with a starting time aligned with the beginning of
the window of interest) and later jobs are executed as soon
as possible [12] (see Figure 3).

For cp-task systems, it is more difficult to determine
a configuration that maximizes the carry-in and carry-out
contributions. In fact:

Ri

Ti

L

Figure 3: Worst-case scenario to maximize the workload of
an interfering task τi in the sequential case.

Ri

L

L

m

✏

✏

Wi/m Wi/m

Figure 4: Worst-case scenario to maximize the workload of
an interfering cp-task τi. Shifting the window of interest by
ε cannot increase the interfering workload.

1) Due to the precedence constraints and different degree
of parallelism of the various execution paths of a cp-task, it
may happen that a larger workload is executed within the
window if the interfering task is shifted left, i.e., by decreas-
ing the carry-in and increasing the carry-out contributions.
This happens for example when the first part of the carry-in
job has little parallelism, while the carry-out part at the end
of the window contains multiple parallel sub-tasks.
2) A sustainable schedulability analysis [16] must guarantee
that all tasks meet their deadlines even when some of them
execute less than the worst-case. For example, one of the
sub-tasks of an execution path of a cp-task may execute for
less than its WCET Ci,j . This may lead to larger interfering
contributions within the window of interest (e.g. a parallel
section of a carry-out job is included in the window due to
an earlier completion of a preceding sequential section).
3) The carry-in and carry-out contribution of a cp-task may
correspond to different conditional paths of the same task,
with different levels of parallelism.

To circumvent the above issues, we consider a scenario
in which each interfering job of task τi executes for its worst-
case workload Wi, i.e., the maximum amount of workload
that can be generated by a single instance of a cp-task. We
defer the computation of Wi to Section 5.3. The next lemma
provides a safe upper-bound on the workload of a task τi
within a window of interest of length L.

Lemma 5.1. An upper-bound on the workload of an interfering
task τi in a window of length L is given by

Wi(L)
def
= d(L+Ri −Wi/m)/Tie ·Wi.

Proof. Consider a situation in which all instances of τi exe-
cute for their worst-case workload Wi, evenly distributing
the workload among the m cores, as in Figure 4. The
worst-case scenario is obtained when the carry-in job is
executed as late as possible, and later jobs execute as soon

as they are released, with their minimum inter-arrival time.
Consider a problem window of length L aligned with the
start of the execution of the carry-in job. Shifting left/right
the window by ε cannot possibly increase the contributed
workload, nor does it distributing the workload on a lesser
number of cores. Consider the enlarged window of length
L+Ri−Wi/m that is aligned with the release of the carry-
in job: an upper-bound on the number of instances that may
execute within such a window is d(L+Ri−Wi/m)/Tie, each
one contributing for Wi. This also applies to the (smaller)
original window of interest.

When using global EDF, another upper-bound on the
interfering contribution of each task is obtained by noting
that the deadline of the interfering jobs cannot be later than
that of the interfered task.

Lemma 5.2. An upper-bound on the interfering workload of a
task τi on a task τk with global EDF is given by

Ii,k
def
= d(Dk −Di +Ri)/Tie ·Wi.

Proof. Consider a window [rk, rk + Dk] of a task τk. The
interfering contribution of a task τi is maximized when
the deadline of its carry-out job is aligned with rk + Dk,
and all instances execute as late as possible. Indeed, a later
deadline would decrease τi’s contribution by a full (carry-
out) instance, against a potential increase in the carry-in
contribution that would not be higher; similarly, an earlier
deadline could only decrease the contribution of the previ-
ous instances.

Since the response time of τi is Ri, the last instance of τi
cannot execute between rk +Dk − (Di −Ri) and rk +Dk.
We compute the number of jobs that may execute in the
window [rk, rk +Dk − (Di−Ri)], which is upper-bounded
by d(Dk− (Di−Ri))/Tie. Since each instance contributes at
mostWi to the interfering workload, the lemma follows.

5.2 Intra-task interference
We now consider the remaining terms of Equation (3), which
take into account the contribution of the considered task to
its overall response-time, and we compute an upper-bound
on Zk

def
= len(λ∗k) + 1

mIk,k.

Lemma 5.3. For a constrained deadline cp-task system scheduled
with any work-conserving algorithm, the following relation holds
for any task τk:

Zk = len(λ∗k) +
1

m
Ik,k ≤ Lk +

1

m
(Wk − Lk). (4)

Proof. Since we are in a constrained deadline setting, a job
will never be interfered by other jobs of the same task.
Recalling that Wk is the maximum possible workload pro-
duced by a job of cp-task τk, note that Wk ≥ Lk ≥ len(λ∗k).
Consider the choice of conditional branches that yields
the response time of τk and let W ∗k be the corresponding
workload of τk; then W ∗k ≤Wk by Definition 3.3. Moreover,
Ik,k + len(λ∗k) ≤ W ∗k , since no node in λ∗k can contribute to
Ik,k and vice versa. Thus, Ik,k ≤ Wk − len(λ∗k), that is, the
portion of Wk that may interfere with the critical chain λ∗k is
at most the nonnegative quantity Wk − len(λ∗k). Hence,

len(λ∗k) +
1

m
Ik,k ≤ len(λ∗k) +

1

m
(Wk − len(λ∗k)). (5)

Since len(λ∗k) ≤ Lk and m ≥ 1, the lemma follows.

Since Zk includes only the contribution of task τk, one
may think that the sum (len(λ∗k) + 1

mIk,k) is equal to
the worst-case response-time of τk when it is executed in
isolation on the multi-core system (i.e., the makespan of τk).

However, this is not true. For example, consider the case
of a two-core platform with two cp-tasks τk, τi. Task τk has
only one if-then-else statement; assume that when the “if”
part is executed, the task executes one sub-task of length
10, otherwise, the task executes two parallel sub-tasks of
length 6 each. Thus, the makespan of τk is given by the “if”
branch, i.e., 10. If τi consists of a single sub-task of length
6, the worst-case response time of τk occurs when its “else”
branch is executed, yielding a response time of 12. The share
of the response time due to the term len(λ∗k) + 1

mIk,k in
Equation (3) is 6 + (1/2) · 6 = 9, which is strictly smaller
than the makespan. Note that len(λ∗k)+ 1

mIk,k does not even
represent a valid lower bound on the makespan. This can be
seen by replacing the “if” branch in the above example with
a shorter subtask of length 8, giving a makespan of 8. For
this reason, one cannot replace the term len(λ∗k) + 1

mIk,k in
Equation (4) with the makespan of τk.

The righthand side of Equation (4) has been therefore
introduced to upper-bound the term len(λ∗k) + 1

mIk,k. In-
terestingly, this quantity does also represent a valid upper-
bound on the makespan of τk, i.e., the response time of a
cp-task executing in isolation. We omit the proof that is
identical to the proofs of the given bounds, considering only
the interference due to the task itself.

5.3 Computation of cp-task parameters
The upper-bounds on the interference given by Lemmata
5.1, 5.2 and 5.3 require the computation of two characteristic
parameters for each cp-task τk: the worst-case workload Wk

and the length of the longest chain Lk. The longest path of a
cp-task can be computed in the same way as for classical
DAG task, since any conditional branch defines a set of
possible paths in the graph. For this purpose, conditional
nodes can be considered as if they were regular nodes. The
computation can be implemented in time linear in the size
of the DAG by standard techniques (e.g., [19, Section 4.7]).

The computation of the worst-case workload of a cp-task
is more involved. We hereafter propose an algorithm to com-
pute Wk for each task τk in time quadratic in the DAG size;
its pseudocode is shown in Algorithm 1. The algorithm first
computes a topological order of the DAG2. Then, exploiting
the (reverse) topological order, a simple dynamic program
can compute for each node the accumulated workload corre-
sponding to the portion of the graph already examined. The
algorithm must distinguish the case when the node under
analysis is the head of a conditional pair or not. If this is the
case, then the maximum accumulated workload among the
successors is selected, otherwise the sum of the workload
contributions of all successors is computed.

Algorithm 1 takes as input the graph representation of
a cp-task G and outputs its worst-case workload W . In the

2. A topological order is such that if there is an arc from u to v in the
DAG, then u appears before v in the topological order. A topological
order can be easily computed in time linear in the size of the DAG (see
any basic algorithm textbook, such as [19, Section 3.3.2]).

Algorithm 1 Worst-Case Workload Computation

1: procedure WCW(G)
2: σ ← TOPOLOGICALORDER(G)
3: S(vsink)← {vsink}
4: for vi ∈ σ from sink to source do
5: if SUCC(vi) 6= ∅ then
6: if ISBEGINCOND(vi) then
7: v∗ ← argmaxv∈SUCC(vi)

C(S(v))
8: S(vi)← {vi} ∪ S(v∗)
9: else

10: S(vi)← {vi} ∪
⋃
v∈SUCC(vi)

S(v)
11: end if
12: end if
13: end for
14: return C(S(vsource))
15: end procedure

algorithm, for any set of nodes S, its total WCET is denoted
by C(S). First, at line 2, a topological sorting of the vertices
is computed and stored in the permutation σ. Then, the
permutation σ is scanned in reverse order, that is, from the
(unique) sink to the (unique) source of the DAG. At each
iteration of the for loop at line 4, a node vi is analyzed; a
set variable S(vi) is used to store the set of nodes achieving
the worst-case workload of the subgraph including vi and
all its descendants in the DAG. Since the sink node has no
successors, S(vsink) is initialized to {vsink} at line 3. Then,
the function SUCC(vi) computes the set of successors of
vi. If that set is not empty, function ISBEGINCOND(vi) is
invoked to determine whether vi is the head node of a con-
ditional pair. If so, the node v∗ achieving the largest value of
C(S(v)), among v ∈ SUCC(vi), is computed (line 7). The set
S(v∗) therefore achieves the maximum cumulative worst-
case workload among the successors of vi, and is then used
to create S(vi) together with vi. Instead, whenever vi is not
the head of a conditional pair, all its successors are executed
at runtime. Therefore, the workload contributions of all its
successors must be merged into S(vi) (line 10) together
with vi. The procedure returns the worst-case workload
accumulated by the source vertex, that is C(S(vsource)).

The complexity of the algorithm is quadratic in the size
of the input DAG. Indeed, there are O(|E|) set operations
performed throughout the algorithm, and some operations
on a set S (namely, the ones at line 7) also require computing
C(S), which has cost O(|V |). So the time complexity is
O(|V ||E|). To implement the set operations, set membership
arrays are sufficient.

One may be tempted to simplify the procedure by avoid-
ing the use of set operations, keeping track only of the
cumulative worst-case workload at each node, and allowing
a linear complexity in the DAG size. However, such an
approach would lead to an overly pessimistic result. Con-
sider a simple graph with a source node forking multiple
parallel branches which then converge on a common sink.
The cumulative worst-case workload of each parallel path
includes the contribution of the sink. If we simply sum such
contributions to derive the cumulative worst-case workload
of the source, the contribution of the sink would be counted
multiple times. Set operations are therefore needed to avoid

accounting multiple times each node’s contribution.
We now present refinements of Algorithm 1 in special

sub-cases of interest.

5.3.1 Non-conditional DAG tasks
The basic sporadic DAG task model does not explicitly
account for conditional branches. Therefore, all vertices of a
cp-task contribute to the worst-case workload, which is then
equal to the volume of the DAG task: Wk =

∑
vk,j∈Vk

Ck,j .
In this particular case, the time complexity to derive the
worst-case workload of a task (quadratic in the general
case), becomes O(|V |), i.e., linear in the number of vertices.

5.3.2 Series-parallel conditional DAG tasks
Some programming languages yield series-parallel cp-tasks,
that is, cp-tasks that can be obtained from a single edge
by series composition and/or parallel composition. For ex-
ample, the cp-task in Figure 5 is series-parallel, while the
cp-tasks in Figures 2 and 6 are not. Such a structure can
be detected in linear time [32]. In series-parallel graphs, for
every head si of a conditional or parallel branch there is
a corresponding tail ti. For example, in Figure 5, the tail
corresponding to parallel branch head v2 is v9. Algorithm 1
can be specialized to series-parallel graphs. For each vertex
u, the algorithm will simply keep track of the worst-case
workload of the subgraph reachable from u, as follows. For
each head vertex si of a parallel branch, the contribution
from all successors should be added to si’s WCET, subtract-
ing however the worst-case workload of the corresponding
tail ti a number of times equal to the out-degree of si minus
1; for each head vertex si of a conditional branch, only the
maximum among the successors’ worst-case workloads is
added to si’s WCET. Finally, for all non-head vertices add
the worst-case workload of their unique successor to their
WCET. The complexity of this algorithm reduces then to
O(|E|), i.e., it becomes linear in the size of the graph.

5.4 Schedulability condition
Lemmata 5.1 and 5.3 and the bounds previously computed
allow proving the following theorem [12].

Theorem 5.1. Given a cp-task set globally scheduled on m cores,
an upper-bound Rubk on the response-time of a task τk can be
derived by the fixed-point iteration of the following expression,
starting with Rubk = Lk:

Rubk ← Lk +
1

m

(
Wk − Lk

)
+

1

m

∑
∀i6=k
X ALG
i ,

where, with global FP:

X ALG
i = X FP

i =

{
Wi(R

ub
k), ∀i < k

0, otherwise
;

with global EDF:

X ALG
i = X EDF

i = min
{
Wi(R

ub
k), Ii,k

}
;

and X ALG
i =Wi(R

ub
k) for any work-conserving scheduler.

The schedulability of a cp-task system can then be sim-
ply checked using Theorem 5.1 to compute an upper-bound
on the response-time of each task. In the FP case, the bounds

1 0

1

1

1

1

5

v1

v2

v3

v4

v5

v6

v7

v8

1

1

1
v9

v10

Figure 5: Example of cp-task that shows the pessimism of
the upper-bound given in Equation (4).

are updated in decreasing priority order, starting from the
highest priority task. In this case, it is sufficient to apply
Theorem 5.1 only once for each task. Instead, in the EDF
or general work-conserving cases, multiple rounds may be
necessary. All bounds are initially set to Rubk = Lk,∀τk ∈ T .
Then, Theorem 5.1 is used to compute a response-time
bound for each task τk. The procedure continues until either
(i) one of the response-time bounds exceeds the correspond-
ing task deadline (returning a negative schedulability re-
sult), or (ii) a fixed-point is reached (returning a schedulable
condition).

Since Wi is a step function of Rubk , each iteration in-
creases Rubk by at least 1/m, but never beyond Dk. There-
fore, the test converges within a pseudopolynomial number
of steps.

5.5 Improved upper-bounds on intra-task interference

The upper bound given in Lemma 5.3 might be pessimistic.
As an example, consider the cp-task τk in Figure 5, which
executes on a platform composed of m = 2 processors. This
cp-task has a longest path length of 7 time-units (given by
the upper branch), and a worst-case workload Wk = 8 time-
units (given by the lower branch). When m = 2, Equation
(4) gives a bound on Zk of 7.5. However, if the upper branch
is taken after the completion of v1, only the longest path of
τk would be executed, yielding a value of Zk = 7 time-units.
Instead, if the lower branch is taken, only the corresponding
portion of the graph would be executed, with an upper-
bound of Zk ≤ 4+4/2 = 6 time-units. Hence, in both cases,
the upper-bound computed by (4) would be pessimistic.

This is mainly due to the fact that Equation (4) considers
the worst-case situation where, simultaneously, i) the critical
path of Gk is executed; and ii) the total worst-case workload
of τk is experienced. However, given the internal structure
of the cp-task of Figure 5, this situation can never happen.

The example intuitively suggests that the bound in Equa-
tion (4) can be further improved by jointly computing the
worst-case workload and the longest chain length for each
portion of the cp-task, so that both values refer to the same
conditional branch. Specifically, for a given chain λ of τk, let
Wλ
k be the maximum workload attainable by those instances of

τk in which all nodes in λ are executed.

Then, arguing similarly as in Lemma 5.3, we get:

Lemma 5.4.

Zk ≤ len(λ∗k) +
1

m
(W

λ∗
k

k − len(λ∗k))

≤ max
λ

(
len(λ) +

1

m
(Wλ

k − len(λ))

)
where λ ranges over all source-sink paths of τk.

Algorithm 2 Zk Bound Computation

1: procedure ZBOUND(G,m)
2: σ ← TOPOLOGICALORDER(G)
3: S(vsink)← {vsink}
4: T (vsink)← {vsink}
5: f(vsink)← Csink

6: for vi ∈ σ from sink to source do
7: if SUCC(vi) 6= ∅ then
8: if ISBEGINCOND(vi) then
9: v∗ ← argmaxv∈SUCC(vi)

C(S(v))
10: S(vi)← {vi} ∪ S(v∗)
11: u∗ ← argmaxu∈SUCC(vi)

f(u)
12: T (vi)← {vi} ∪ T (u∗)
13: f(vi)← Ci + f(u∗)
14: else
15: S(vi)← {vi} ∪

⋃
v∈SUCC(vi)

S(v)

16: u∗ ← argmaxu∈SUCC(vi)

(
f(u) +

17: +
∑
w∈SUCC(vi),w 6=u C(S(w) \ T (u))/m

)
18: T (vi)← {vi} ∪ T (u∗)
19: f(vi)← Ci + f(u∗)+
20: +

∑
w∈SUCC(vi),w 6=u∗ C(S(w) \ T (u∗))/m

21: end if
22: end if
23: end for
24: return f(vsource)
25: end procedure

Algorithm 2 takes as input a given task graph G and
m and outputs an upper-bound on the task’s Zk value by
computing jointly the worst-case workload and the contri-
butions of different subgraphs of the task. As for Algorithm
1, a topological sorting of the nodes is required (line 2).
Three variables for each node vi are used by the algorithm
to store intermediate results: S(vi) is a set representing the
nodes that determine the largest partial workload from vi till
the end of the DAG; f(vi) stores the bound on the partial
Zk value from node vi to the end of the DAG, including the
full contribution of nodes belonging to the partial longest
chain (stored in set T (vi)) and the workload contribution
over m cores due to other nodes of the same conditional
instance. The computation of the values S(vi) (lines 3, 10,
15) is exactly as in Algorithm 1.

In the sequel, we focus on the computation of f(vi) and
T (vi). Since the sink node has no successors, we initialize
T (vsink) to {vsink} and f(vsink) to Csink. The algorithm’s
main loop iterates over the nodes of G in reverse topological
order (line 6). If the node under analysis has some successor,
different actions are taken depending on whether vi is the
head of a conditional pair or not. In the former case, we
compute the successor u∗ that maximizes the intermediate

2 2

1 1
v1

v2

v3

v4

v5

v6

v7

v8

v9
1

1

1

1

3

1

1

v10

v11

Figure 6: Example of cp-task that shows the two sources of
pessimism in the upper-bound of Algorithm 2.

upper-bound on Zk, and set f(vi) and T (vi) accordingly. If,
instead, a parallel branch is departing from the current node
vi, the workload by all the successors will be transferred
to vi. The goal is to determine the successor u that yields
the largest combined value of its partial Zk bound (f(u))
plus the total self-interference from other nodes, which is
bounded by ∑

w∈SUCC(vi),w 6=u

C(S(w) \ T (u))/m.

Note that the set T (u) is subtracted from the set to consider
for the self-interfering contribution, because such nodes are
already fully accounted for in the term f(u).

The complexity of Algorithm 2 is O(|V ||E|∆), where
∆ denotes the maximum out-degree of a node. In fact,
similarly to the analysis of Algorithm 1, the complexity of
the algorithm is O(|V ||E|), plus the cost of executing the
instructions at lines 16 − 17. The cost of performing such
an instruction once is O(|V |δ(vi)2), where δ(vi) is the out-
degree of node vi; since δ(vi) ≤ ∆, it follows that the total
cost of the instructions at line 16− 17 is

O

(
|V |

∑
i

δ(vi)
2

)
= O

(
|V |∆

∑
i

δ(vi)

)
= O(|V ||E|∆).

This cost dominates, in the worst case, the cost of other oper-
ations; hence, the complexity of Algorithm 2 is O(|V ||E|∆).

5.5.1 A non-redundant upper-bound

The previously introduced upper-bound is still not accurate,
because it may lead to account multiple times the interfering
contribution of some vertices. In Figure 6 we report an
example to intuitively show the two sources of pessimism
that affect Algorithm 2. In this example, we assume that the
cp-task τk in Figure 6 executes on m = 2 processors.

When Algorithm 2 examines vertex v2, it designates v5
as the vertex u∗ that maximizes its partial bound on Zk
plus the intra-task interference from the other successors. In
particular, the instruction at lines 19-20 yields

f(v2) = C2 + f(v5) +
1

m

(
C(S(v4) \ T (v5))+

+ C(S(v6) \ T (v5))
)

= 2 + 6 + (1 + 2)/2 = 9.5.
(6)

When vertex v1 is examined, the algorithm selects v2 as
the vertex u∗, and the instruction at lines 19-20 now yields

f(v1) = C1 + f(v2) +
1

m

(
C(S(v3) \ T (v2)+

+ C(S(v10) \ T (v2)
)

= 1 + 9.5 + (5 + 1)/2 = 13.5,

(7)

which also represents the final output of the algorithm.
Note, however, that the contribution of vertices v6 and v9
has been accounted twice: first, as intra-task interference on
v2 (i.e., inside set S(v6) \ T (v5) in Equation (6)), and then
as intra-task interference on v1 (i.e., inside set S(v3)\T (v2))
in Equation (7). Analogously, also the contribution of v10 is
accounted twice by Algorithm 2: first, among the successors
of v7, and then, among the successors of v1. We identify two
sources of pessimism in Algorithm 2.
First source of pessimism. When examining vertex u, ver-
tices reachable from successors of u (other than u∗) that
have already been considered when examining u∗ may be
counted multiple times (as v6 and v9 in the example above).

This problem can be overcome by replacing the summa-
tion at lines 17 and 20 of Algorithm 2 with the expression∑

w∈SUCC(vi),w 6=u

C(S(w) \ S(u))/m.

The new expression differs from the one given in Algorithm
2 because it subtracts S(u) (instead of T (u)) from the set
to consider for the self-interfering contribution, since such
vertices have been already fully accounted for in the term
f(u), either as part of the partial longest chain or as intra-
task interference on u. Since the set S(u) contains vertices
from both sets, the new formulation allows discarding all
vertices that have already been accounted when examining
u∗. Indeed, applying this improvement to the above exam-
ple, the contribution from vertices in S(v3) \ S(v2) will be
computed (instead of S(v3) \ T (v2)) and added to f(v1);
since S(v2) also contains v6 and v9, their contribution will
not be counted multiple times, leading to a tighter bound
on Zk given by

f(v1) = C1 + f(v2) +
1

m
(C(S(v3) \ S(v2))+

+ C(S(v10) \ S(v2)) = 1 + 9.5 + (3 + 1)/2 = 12.5.

Second source of pessimism. When examining vertex u,
vertices reachable from successors of u (other than u∗) that
have been previously examined may be accounted multiple
times (as vertex v10 in the example above).

This second issue can be prevented by using set oper-
ations instead of the sum operand at lines 17 and 20 of
Algorithm 2, which leads to the expression

1

m
· C

 ⋃
w∈SUCC(vi),w 6=u

S(w) \ S(u)

 =

=
1

m
· C (S(vi) \ S(u) \ {vi}) .

Applying this refined expression to the example above,
the contribution of v10 is finally accounted only once. It can
be easily verified that the final bound on Zk is now 12.

The following lemma proves that with the improve-
ments to Algorithm 2 discussed above, the bound on Zk

Figure 7: Graph structure of the Cholesky benchmark.

that we obtain is non-redundant, in the sense that it does not
account the contribution of any vertex more than once.

Lemma 5.5. Algorithm 2 with the improvements discussed above
yields a non-redundant upper-bound on Zk.

Proof. The only steps in the updated algorithm where the
contribution of a vertex may be added more than once are
line 13 and lines 19-20. At line 13, only the contributions of
a vertex vi and of some of its descendants (those in S(u∗) ⊂
S(vi) \ {vi}) are being added, but vi /∈ S(u∗), so the two
sets are disjoint. At lines 19-20, a vertex vi, and some of its
descendants in S(u∗) (line 19) and in S(vi) \ S(u∗) \ {vi}
(the updated line 20) are being considered. Again, these sets
are disjoint and no double counting can occur.

With a reasoning similar to the one in Section 5.5 one
obtains that the complexity of the updated Algorithm 2 is

O

(
|V |

∑
i

δ(vi)|V |
)

= O

(
|V |2

∑
i

δ(vi)

)
= O(|V |2|E|).

6 EXPERIMENTAL CHARACTERIZATION

In order to evaluate the effectiveness of the proposed ap-
proach, we faced the problem of generating a large number
of conditional parallel task sets that are representative of
realistic workloads. To do that, we (i) selected three real
parallel programs with sufficiently different topologies, im-
plemented in OpenMP; (ii) extracted and characterized their
cp-DAG structures; and (iii) developed a (non-trivial) graph
generation tool that may reproduce the structures of the
considered programs. The parallel programs that have been
selected are:

• Wavefront, a matrix processing algorithm in which
the matrix is decomposed into smaller blocks and
traversed through its diagonals. The program takes
as input the block size bs;

• Cholesky, a factorization algorithm used for efficient
numerical solution of systems of linear equations
or Monte Carlo simulation techniques. The program
takes as input the number of blocks nb per dimen-
sion, and performs the factorization on block sub-
matrices;

• ESA, an infrared pre-processing application devel-
oped by the European Space Agency (ESA) and used
by H2RG sensors to measure the red-shift of galaxies.

To determine the cp-task structures corresponding to
the considered OpenMP programs, we adopted a tool, pre-
sented in [33], that takes as input an OpenMP program and
extracts the corresponding DAG structure. The considered
OpenMP benchmarks have been executed on a Intel(R)
Core(TM) i7-4600U processor, with 4 cores and 2 hardware
threads per core, and a 6 MB L3 cache, and then processed
by the tool in [33] to extract the corresponding cp-DAGs.
For the first two benchmarks (Wavefront and Cholesky),
we consider a restricted input set, namely bs ∈ {1, 2, 4}
and nb ∈ {1, 2, 4}, respectively. Different computation is
performed by the two programs depending on the input
value, hence their corresponding cp-DAGs have a con-
ditional head node and three branches with significantly
unbalanced workload (see Figure 7). Conversely, ESA is a
non-conditional (i.e., classic) DAG with a very high level of
parallelism and a large degree of connectivity.

Finally, we implemented a cp-task generation tool that
could reproduce the different structures of the selected use
cases. We refer to [28] as a baseline for our random cp-task
generation. In that work, multiple nested levels of condi-
tional branches are recursively generated by expanding non-
terminal vertices (called blocks) either to terminal vertices
or to conditional subgraphs, until reaching a maximum
recursion depth. The derivation rules given in [28] need to
be extended by considering that non-terminal vertices can
be expanded to either terminal vertices, parallel subgraphs
or conditional subgraphs. We specify the probabilities that
control such three events as pterm, ppar, and pcond, respec-
tively, requiring that pterm + ppar + pcond = 1.

Additionally, the maximum number of branches of par-
allel and conditional subgraphs are indicated as npar and
ncond, respectively. Hence, whenever a parallel subgraph is
generated, the number of its branches is uniformly selected
in the interval [2, npar]. Analogously, whenever a non-
terminal vertex is expanded to a conditional subgraph, the
number of branches is uniformly selected in [2, ncond].

Unfortunately, this methodology only allows generating
series-parallel graphs. Therefore, since in this work we deal
with a more general class of task graphs (i.e., cp-DAGs that
respect the structural restrictions imposed by conditional
nodes, as described in Section 3), we place additional edges
between pairs of nodes to obtain cp-DAG tasks. In our
methodology, an edge is added between two vertices with
a certain probability padd, provided that any of such edges
respects the structural restrictions dictated by our cp-task
model (see Definition 3.1).

Each cp-task τk is generated as follows:

• the WCET Ck,j of each vertex vk,j is randomly
selected as a positive integer in the interval [1, 100];

• then, Lk and Wk are computed;
• the period Tk is uniformly selected as an integer in

the interval [Lk,Wk/β], where β ≤ 1 is a parameter
that controls the minimum cp-task utilization. In
this way, the utilization of each cp-task is uniformly
distributed in the interval [β,Wk/Lk], where its right
endpoint, corresponding to the maximum possible
utilization, is given by the average degree of paral-
lelism of the cp-task;

• finally, the relative deadline Dk is uniformly selected
as an integer in the interval [Lk, Tk].

Whenever a specific utilization is targeted, we repeat-
edly add tasks until the desired cumulative utilization is
exceeded. Then, the period of the last task is increased
to match the desired total system utilization. In all our
experiments, we set the maximum recursion depth to 3 for
each cp-task.

The synthetic cp-task generator described above is able
to generate workloads that closely match the considered
real graph structures. In particular, Figure 8 illustrates a
randomly generated graph that resembles the structure
of Wavefront and Cholesky (with a conditional head node
and three branches with highly unbalanced workload). The
graph has been obtained by setting ncond = 3, npar = 6,
pcond = 0.4, ppar = 0.4, pterm = 0.2, padd = 0.1. Anal-
ogously, Figure 9 shows a strongly connected and highly
parallel DAG resembling the ESA benchmark, obtained by
setting npar = 10, pcond = 0, ppar = 0.8, pterm = 0.2,
padd = 0.1.

Figure 8: Randomly gener-
ated cp-task having three
conditional branches with
unbalanced workload.

Figure 9: Randomly gener-
ated cp-task with a high
level of parallelism and a
large degree of connectivity.

6.1 Experimental results for cp-tasks

We show the experimental comparison of our response-time
analysis against the only two works in the literature that
target the global scheduling of DAG tasks with conditional
branches, i.e., [20] and [10]. The first work proposes a trans-
formation of conditional DAG tasks scheduled with global
FP into synchronous parallel tasks. Existing schedulability
tests can then be applied on the transformed task-set. For
this purpose, we adopted the test for synchronous parallel
tasks proposed by Maia et al. [26], which, to the best of our
knowledge, outperforms the others. This schedulability test
will be referred to as COND-SP. The second work by Baruah
et al. [10] proposes a method to transform any conditional
DAG task into a non-conditional DAG task on which the
existing tests in [15] and [9] can be applied. Since the test
in [9] analytically dominates the one in [15], we will only
use the former in our comparison. Finally, we will denote as
RTA-XXX-a (resp., RTA-XXX-b) our response-time analysis
for FP (XXX=FP) or EDF (XXX=EDF) when the intra-task
interference is bounded as described in Algorithm 2, with
(resp., without) the improvements discussed in Section 5.5.1.
All the algorithms compared in our experiments have been
implemented as MATLAB R© code. Since a considerable
effort was required to design a sufficiently general setting
for evaluating the performance of graph-based task systems,
we created a public repository [4] where our code can be

Table 2: Case study description

Benchmark Lk Wk Dk Tk pk

Wavefront 1635 3252 2000 2600 High
ESA 5784 48075 17600 22000 Medium

Cholesky 1664 3812 17000 25000 Low

freely downloaded to test the schedulability performance of
conditional/parallel task systems.

In the first experiment, we considered an application
composed of the three representative programs, setting
deadlines and periods to produce a non-trivial scheduling
scenario. Table 2 describes for each program its critical path
length Lk, worst-case workload Wk, relative deadline Dk,
period Tk and static priority level pk. Time values are given
in microseconds.

Our objective is to determine what is the minimum
number of processors required to successfully schedule the
considered application. Under global FP scheduling, the
task-set described above can be successfully scheduled on
a platform consisting of m = 6 processors, being R1 =
1904.5 ≤ D1, R2 = 16626 ≤ D2 and R3 = 13286 ≤ D3.
Conversely, when using COND-SP, m = 11 processors
are required to schedule the given application. Hence, our
test is able to almost halve the required computational
resources. Also, notice that the task-set in Table 2 would
not be deemed schedulable by RTA-FP on m = 6 processors
if a Deadline Monotonic priority ordering was considered
(m = 7 processors would be necessary in that case). If,
instead, global EDF scheduling is assumed, our RTA-EDF
approach requires m = 8 processors to deem the task-set
schedulable, which is the same result obtained when using
the approach by Baruah.

To give a larger perspective of the relative performance
of the considered algorithms, we hereafter show the number
of schedulable task-sets detected by each algorithm among
the tasks randomly generated with our tool. For each exper-
iment, 1000 task-sets are newly generated for each value on
the x−axis.

We first consider the FP case, with tasks priorities as-
signed according to a Deadline Monotonic (DM) ordering,
setting pcond = 0.4, ppar = 0.4, pterm = 0.2, padd = 0.1,
ncond = 2, npar = 6, β = 0.1.

In the first set of experiments, we varied the total
system utilization UT in the range [0,m]. The number of
schedulable task-sets obtained when m = 4 is reported
in Figure 10. The trend observed in the figure, which is
representative of the general behavior, shows that RTA-FP
clearly outperforms COND-SP for any value of UT .

In the second set of experiments, we varied the number
of processors. The results for UT = 2 are reported in Figure
11. For low values of m, RTA-FP significantly outperforms
COND-SP, while for a large number of processors both tests
are able to successfully schedule nearly all task-sets.

In the third set of experiments, the number of tasks n is
varied in the range [1, 20]. Since n has now a fixed value
in each experiment, individual cp-task utilizations have
been computed using UUnifast [13]. Figure 12 illustrates the
results for m = 4 and UT = 2. While the performance of the
two tests is comparable when n is small, RTA-FP exhibits

a substantial improvement over COND-SP when n ≥ 4.
Furthermore, RTA-FP achieves full schedulability for large
values of n. This conforms to the intuition that scheduling a
large number of “light” tasks is easier than scheduling fewer
“heavy” tasks. Instead, COND-SP achieves its maximum
schedulability performance for n = 5 and then degrades
for higher values of n. This stems from the pessimism
introduced by the transformation technique in [20], which
increases when the number of tasks is higher.

Another drawback of COND-SP concerns its complexity,
since it requires enumerating all the conditional flows of
each cp-task, which are exponentially many in the nest-
ing level of conditional statements. Instead, our approach
relies on efficient algorithms that explicitly deal with con-
ditional branches in psuedo-polynomial time. The main
consequence is that the running time of COND-SP is often
quite prohibitive, while RTA-FP runs very fast (i.e., in the
order of milliseconds).

Other experiments have been performed by varying the
connectivity degree of the tasks, i.e., by changing the proba-
bility padd, while keeping UT , n and m constant. However,
the results do not show any particular trend, as the schedu-
lability ratio remains almost constant for all possible values
of padd, hence the corresponding plots are not reported. In
other experiments, we have also varied the composition of
the cp-tasks, by acting on pcond and ppar, while keeping
their sum constant. Again, no interesting trend has been
identified. Such results can be explained considering that
the computation of the interference produced by each cp-
task highly depends on its worst-case workload, and its
computation (see Algorithm 1) is not very much influenced
by the degree of parallelism of the cp-task. Furthermore,
the notion of worst-case workload represents an effective
way of abstracting from the different conditional flows.
This explains why the composition of tasks in terms of
conditional/parallel branches does not significantly affect
the schedulability performance.

We now proceed to the global EDF case. In Figure 13,
we report the number of schedulable task-sets with m = 4
when UT ∈ [0, 4]. At all utilization levels, our approach
is able to successfully schedule more task-sets. The same
trend can be observed when varying the number of cores.
Figure 14 illustrates representative results when UT = 2
and m ∈ [2, 30]. Our approach performs significantly better
for any value of m: in particular, while RTA-EDF is able
to schedule nearly all task-sets for a large value of m, the
approach by Baruah et al. cannot admit a large share of
the generated task-sets even when the number of cores
significantly increases.

Finally, Figure 15 shows the comparison between the two
approaches when varying the number of tasks (n ∈ [1, 20]),
with UT = 2 and m = 8. While RTA-EDF admits almost all
task-sets when n ≥ 7, the approach by Baruah et al. achieves
full schedulability only for a very large value of n.

6.2 Experimental results for classic DAG tasks

The following experiments restrict our task model to the
case where conditional statements are not modeled, i.e.,
classic DAG tasks are considered. This particular setting
allowed us to evaluate the improvement of our response-

0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

900

1000

Utilization

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−FP−a

RTA−FP−b

COND−SP

Figure 10: RTA-FP as a function of UT
(m = 4, constrained deadlines).

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

1000

Number of processors

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−FP−a

RTA−FP−b

COND−SP

Figure 11: RTA-FP as a function of m
(UT = 2, constrained deadlines).

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Number of tasks

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−FP−a

RTA−FP−b

COND−SP

Figure 12: RTA-FP as a function of n
(m = 4, UT = 2, constr. deadlines).

0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

900

1000

Utilization

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−EDF−a

RTA−EDF−b

Baruah et al.

Figure 13: RTA-EDF as a function of UT
(m = 8, constrained deadlines).

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

Number of processors

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−EDF−a

RTA−EDF−b

Baruah et al.

Figure 14: RTA-EDF as a function of m
(UT = 2, constrained deadlines).

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Number of tasks

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−EDF−a

RTA−EDF−b

Baruah et al.

Figure 15: RTA-EDF as a function of n
(m = 8, UT = 2, constr. deadlines).

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

Utilization

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−EDF−a

RTA−EDF−b

Baruah

Li et al.

Figure 16: RTA-EDF as a function of UT
(m = 8, implicit deadlines).

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

1000

Number of processors

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−EDF−a

RTA−EDF−b

Baruah

Li et al.

Figure 17: RTA-EDF as a function of m
(UT = 2, implicit deadlines).

2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

900

1000

Number of tasks

N
u

m
b

e
r

o
f

s
c
h

e
d

u
la

b
le

 t
a

s
k
−

s
e

ts

RTA−EDF−a

RTA−EDF−b

Baruah

Li et al.

Figure 18: RTA-EDF as a function of n
(m = 8, UT = 2, implicit deadlines).

time analysis for global EDF over existing schedulability
tests targeting systems of sporadic DAG tasks.

The random task generator described above can be
simply adapted to generate classical DAG tasks by setting
pcond = 0 and requiring that pterm + ppar = 1. Specifically,
we set: ppar = 0.8, pterm = 0.2, padd = 0.1, npar = 6,
β = 0.1.

We compared our RTA-EDF test against three schedu-
lability tests for systems of sporadic DAG tasks scheduled
according to global EDF:

• the test by Baruah [9], which analytically dominates
the one in [15];

• the test by Li et al. [23], based on capacity augmen-
tation bound;

• the test by Qamhieh et al. [29] that takes into account
the internal structure of the DAG.

Since the test in [23] assumes implicit deadlines, we
report all the results under that setting for consistency,
although similar results have been obtained also in the
general case of constrained deadlines. We do not plot the
results of the test in [29], because its performance was
very poor in all observed configurations. This stems from
the fact that the analysis in [29] is mainly focused with
improving the minimum processor speed that guarantees
schedulability under global EDF, rather than ensuring a
good schedulability performance.

Figure 16 illustrates the number of schedulable task-sets
in the case of m = 8 and varying utilization UT ∈ [0, 8].

While the performance of RTA-EDF drops around UT = 5,
the breakdown utilization of the other approaches is signif-
icantly lower.

Figure 17 illustrates the performance of RTA-EDF when
UT = 2 and m is varied in [2, 30]. As evident from the
figure, RTA-EDF substantially outperforms the other tests,
as it requires a significantly lower number of cores (around
5) to schedule most task-sets, while the test in [9] typically
requires twice that number, and it cannot admit any task-set
when m < 5. The behavior of the test in [23] is even worse,
since a large share of the generated task-sets are not deemed
schedulable even if a very large number of cores is available.
This result indeed reflects the analytical formulation of the
test given in [23].

Figure 18 reports the results obtained when varying the
number of tasks (n ∈ [1, 20]), with m = 8 and UT = 2. As
before, our approach substantially outperforms the others
for any value of n. The test in [9] shows a slowly degrading
trend for high values of n. Instead, the one in [23] is
favorably impacted by increasing n, since by keeping the
total utilization constant the individual critical path lengths
are reduced in average, which is beneficial for the outcome
of the test.

This class of experiments clearly shows that the effective-
ness of our schedulability analysis goes beyond conditional
task structures, as it is able to significantly tighten the
schedulability of non-conditional DAG task systems as well.

6.3 Evaluation of RTA-FP vs. RTA-EDF

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

Utilization

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−FP−a

RTA−FP−b

RTA−EDF−a

RTA−EDF−b

Figure 19: RTA-FP/EDF as
a function of UT (cp-tasks,
m = 8, implicit deadlines).

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

Utilization

N
u
m

b
e
r

o
f
s
c
h
e
d
u
la

b
le

 t
a
s
k
−

s
e
ts

RTA−FP−a

RTA−FP−b

RTA−EDF−a

RTA−EDF−b

Figure 20: RTA-FP/EDF as a
function of UT (DAGs, m =
8, implicit deadlines).

We now compare the performance of our response-time
analysis for global FP (with priorities assigned by DM) and
global EDF as a function of the system utilization UT . In
the following experiments, we consider m = 8 and restrict
to the case of implicit deadlines. Figure 19 and 20 report
the results for the case of cp-tasks and classic DAG tasks,
where the parameters for the task generation have been set
as in Section 6.1 and 6.2, respectively. In both cases, RTA-FP
is able to guarantee ∼75% of the total system utilization,
being able to detect a significant amount of schedulable
task-sets until UT = 6, while the performance of RTA-EDF
drops at a smaller utilization level (around UT = 5), which
corresponds to ∼63% of the total system utilization.

As a salient trait, in both cases the performance of the
schedulability test for global FP is significantly superior
to the corresponding test for EDF, resembling the behav-
ior observed in the case of multiprocessor response-time

analysis for sequential task systems [12]. This is mainly
due to the fact that in the case of FP the interference
from lower-priority tasks can be neglected, which does
not hold when EDF is used. Therefore, the schedulability
performance achieved by our RTA-FP test is able to largely
compensate the disadvantage of FP vs. EDF in terms of
absolute scheduling performance.

As a final remark, we observe that the performance of
our response-time analysis in the conditional case (Figure
19) is very similar to the case when no conditional vertices
are assumed (Figure 20). This fact leads to the conclusion
that the concept of worst-case workload is a meaningful
characterization of conditional-parallel real-time workload,
and, more in general, that the presented analysis is able
to effectively integrate conditional statements with parallel
execution flows.

7 CONCLUSIONS

This paper considered a new task model, the cp-task model,
that generalizes the classic sporadic DAG task model by
integrating conditional branches. Such an additional infor-
mation is exploited by the schedulability analysis to derive
a tighter estimation of the interfering contributions, by
discriminating their level of parallelism depending on the
conditional path undertaken. The topological structure of
a cp-task graph has been characterized in terms of two
recursive composition rules. Then, a schedulability analysis
has been derived to compute a safe upper-bound on the
response-time of each task in pseudo-polynomial time. Be-
sides its reduced complexity, the proposed analysis has the
advantage of requiring only two parameters to characterize
the complex structure of the conditional graph of each
task: the worst-case workload and the length of the longest
path. Algorithms have also been proposed to derive these
parameters from the DAG structure in polynomial time.

Schedulability experiments carried out with randomly
generated cp-task workloads clearly show that the proposed
approach does not only improve over previously proposed
solutions for conditional DAG tasks, but can also be used
to significantly tighten the schedulability analysis of classic
(non-conditional) sporadic DAG task systems.

ACKNOWLEDGMENTS

This work has been supported in part by the European
Community under the JUNIPER project (FP7-ICT-2011.4.4),
grant agreement n. 318763, and the P-SOCRATES project
(FP7/2007-2013), grant agreement n. 611016. The authors
also like to acknowledge Risat M. Pathan for detecting a
(minor) rounding error in an earlier version of Theorem 5.1,
as well as the anonymous reviewers for their suggestions.

REFERENCES

[1] Kalray. http://www.kalrayinc.com/.
[2] Parallela. http://www.parallela.org/.
[3] Texas Instruments. The 66AK2H12 Keystone II Processor.

http://www.ti.com/product/66AK2H12.
[4] A MATLAB R© implementation of schedulability

tests for conditional and parallel task systems.
http://retis.sssup.it/∼al.melani/downloads/cptasks.zip, 2015.

[5] M. Anand, A. Easwaran, S. Fischmeister, and I. Lee. Compositional
feasibility analysis of conditional real-time task models. In ISORC,
2008.

[6] B. Andersson and D. de Niz. Analyzing global-EDF for multipro-
cessor scheduling of parallel tasks. In OPODIS, 2012.

[7] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Döbel, and
H. Härtig. Response-time analysis of parallel fork-join workloads
with real-time constraints. In ECRTS, 2013.

[8] S. Baruah. Feasibility analysis of recurring branching tasks. In
EMWRTS, 1998.

[9] S. Baruah. Improved multiprocessor global schedulability analysis
of sporadic DAG task systems. In ECRTS, 2014.

[10] S. Baruah. The federated scheduling of systems of conditional
sporadic DAG tasks. In EMSOFT, 2015.

[11] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese. A generalized parallel task model for recurrent real-
time processes. In RTSS, 2012.

[12] M. Bertogna and M. Cirinei. Response-time analysis for globally
scheduled symmetric multiprocessor platforms. In RTSS, 2007.

[13] E. Bini and G. C. Buttazzo. Measuring the performance of schedu-
lability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[14] B. Blackham, M. H. Liffiton, and G. Heiser. Trickle: Automated
infeasible path detection using all minimal unsatisfiable subsets.
In RTAS, 2014.

[15] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese.
Feasibility analysis in the sporadic DAG model. In ECRTS, 2013.

[16] A. Burns and S. K. Baruah. Sustainability in real-time scheduling.
Journal of Computing Science and Engineering, 2(1):74–97, 2008.

[17] S. Chakraborty, T. Erlebach, and L. Thiele. On the complexity of
scheduling conditional real-time code. In WADS, 2001.

[18] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin. Global
EDF schedulability analysis for synchronous parallel tasks on
multicore platforms. In ECRTS, 2013.

[19] S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms.
McGraw-Hill, 2006.

[20] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho. A multi-
DAG model for real-time parallel applications with conditional
execution. In SAC, 2015.

[21] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In RTSS, 2010.

[22] S. Lee and M. M. Crawford. Unsupervised multistage image
classification using hierarchical clustering with a bayesian similar-
ity measure. IEEE Transactions on Image Processing, 14(3):312–320,
March 2005.

[23] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global EDF for
parallel real-time tasks. In ECRTS, 2013.

[24] J. Li, J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah.
Analysis of federated and global scheduling for parallel real-time
tasks. In ECRTS, 2014.

[25] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu. Global
EDF scheduling for parallel real-time tasks. Real-Time Systems,
51(4):395–439, 2015.

[26] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho. Response-
time analysis of synchronous parallel tasks in multiprocessor
systems. In RTNS, 2014.

[27] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques
optimizing the number of processors to schedule multi-threaded
tasks. In ECRTS, 2012.

[28] B. Peng, N. Fisher, and M. Bertogna. Explicit preemption place-
ment for real-time conditional code. In ECRTS, 2014.

[29] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet. Global
EDF scheduling of directed acyclic graphs on multiprocessor
systems. In RTNS, 2013.

[30] A. Saifullah, K. Agrawal, C. Lu, and C. D. Gill. Multi-core real-
time scheduling for generalized parallel task models. In RTSS,
2011.

[31] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill.
Parallel real-time scheduling of DAGs. IEEE Trans. Parallel Distrib.
Syst., 25(12):3242–3252, 2014.

[32] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series
parallel digraphs. SIAM Journal on Computing, 11(2):298–313, 1982.

[33] R. Vargas, S. Royuela, M. A. Serrano, X. Martorell, and
E. Quiñones. A lightweight OpenMP4 run-time for embedded
systems. In ASP-DAC, 2016.

[34] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

