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Abstract. Search of algorithms ensemble – that is, best algorithms com-
bination is common used approach in machine learning. MeLiF algorithm
uses this technique for filter feature selection. In our research we proposed
parallel version of this algorithm and showed that it is not only improves
algorithm performance significantly, but also improves feature selection
quality.
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1 Introduction

In modern world, machine learning became one of the most promising and stud-
ied science areas, mainly, because of its universal application to any data-related
problem. One example of such an area is bioinformatics [3; 4; 6; 10], which pro-
duces giant amount of data about gene expression of different organisms. This
data could potentially allow to determine which DNA pieces are responsible
for some visual change of indiviual, or for reactions to particular environment
change. The main problem of such data is its huge number of features and rela-
tively low amount of objects. Because of high-dimensional space, it is very hard
to build a model which generalizes such data well. Furthermore, a lot of features
in such datasets have nothing in common with results, so, they should be treated
as noize.

A∗ = 4

It seems to be logical in this case to select somehow the most relevant features
and to learn a classifier on these only. This idea is implemented in such area of
machine learning as feature selection. There are three main methods of feature
selection: filter selection based on statistical measures of every single feature or
features subsets, wrapper selection based on subspace search with classifier result
as an optimization measure, and embedded selection that uses classificators inner
properties [12].
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The main peculiarity of filter methods is their speed. This leads to the fact
that they are frequently used for preprocessing, and resulting subsets of features
further passed to other wrapper or embedded method. This is especially im-
portant for bioinformatics, where number of features in datasets is sometimes
dozens and hundrends of thousands.

These days, many machine learning algorithms use ensembling [1; 4; 8].
MeLiF algorithm [13] tries to apply this method to feature selection. It builds a
linear combination of basic filters, that selects the most relevant features. MeLiF
has a structural characteristic that it can be easily modified to work in concur-
rent or distributed manner. At this research, we implemented parallel version
of MeLiF called MeLiF+ and achieved significant speed improvement without
losing in selection quality.

The remainder of the paper is organized as follows: MeLiF algorithm is de-
scribed in Section 2, parallelization scheme is proposed in Section 3, experiment
setup and used quality measures are outlined in Section 4, and finally experiment
results are contained in Section 5.

2 MeLiF

Algorithm treats some linear combinations of basic filters as starting points.
It has been observed during experiments that the best option is this following
choice of starting points: (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) – only one basic
filter matters at the beginning, and (1, 1, ..., 1) – all basic filters are equal at
the beginning. Algorithm iterates over the starting points and tries to shift each
coordinate value to small constants +δ and −δ – value of grid spacing for each
point. If some of applied changes succeed, i.e. quality measure for a point after a
shift is greater than the maximum value: the algorithm chooses that point and
starts searching from its first coordinate. If, all coordinates were shifted to +δ
and −δ and no quality improvement observed, algorithm stops.
Algorithm 1 MeLiF algorithm

Input: points, delta, evaluate

1: q∗ ← 0
2: p∗ ← 0
3: for each p ∈ points do
4: q ← evaluate(p)
5: if q > q∗ then
6: p∗ ← p
7: q∗ ← q

8: smthChanged = true
9: while smthChanged do

10: for each dim ∈ p.size do
11: p+ ← p
12: p+[dim]← p+[dim] + delta
13: q+ ← evaluate(p+)
14: if q+ > q∗ then



MeLiF+ 3

15: q∗ ← q+

16: p∗ ← p+

17: smthChanged = true
18: break
19: p− ← p
20: p−[dim]← p−[dim]− delta
21: q− ← evaluate(p−)
22: if q− > q∗ then
23: q∗ ← q−

24: p∗ ← p−

25: smthChanged = true
26: break
27: return(p∗, q∗)

Then, for each point obtained during coordinate descent, the algorithm mea-
sures value of resulting linear combination of basic filters for each feature in
dataset. After that, results are sorted, and the algorithm selects N best fea-
tures. Then, the algorithm runs some classifier only with that feature subset.
The obtained result is saved for comparing with other points and caching. It
helps to reduce working time due to visited points usage.

3 MeLiF+

We proposed the following improvements to the MeLiF method: each starting
point is processed in a distinct thread with global maximum maintained through
synchronization point. Moreover, evaluate submethod is run concurrently for +δ
and −δ, and selects the best point after retrieving both results. We showed that
it not only improves the algorithm performance on multicore system, but also
usually improves feature selection quality.

This fact has the following explanation: the original MeLiF algorithm is
greedy, so it assumes that if each point it steps in is a local optimum then
resulting point will be the global optimum, adding an ability to lookup for two
deltas simultaneously allows algorithm to select better local optimum. Also, as
starting points are processed in parallel, one thread can find a local optimum.
This causes other threads to stop their work even if further descent leads to
the better result. This can cause different selection result, better or worse (both
cases are presented in Section 5), but experiments show that avarage MeLiF+
results are better.

4 Experiments

We used SVM [5] from WEKA [14] library, with polynomial kernel and soft
margin parameter C = 1 as classifier. To improve stability, we used 5-fold cross-
validation. The number of selected features was constant: N = 100. In order to
compare our method with the old one, we used F1 score [11] of SVM classifier.
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As we wanted to know how much our method differs from the original one in
terms of space search strategy, we calculated z-score for each dataset.

We ran our experiments on a machine with following characteristics: 32-core
CPU AMD Opteron 6272 @ 2.1 GHz, 128 GB RAM. We used N = 50 threads,
N = 2 · p · f threads, where p is the number of starting points, f is the number
of folders used for cross-validation.

As basic filters, we used Spearman Rank Correlation (SPC), Symmetric Un-
certainty (SU), Fit Criterion (FC) and Value Difference Metric (VDM) [2; 9].
For each dataset, we executed MeLiF and MeLiF+ and stored their working
time and points with the best classification result.

We used 50 datasets of different sizes: 33 datasets have been taken from
Gene Expression Omnibus, 5 from Kent Ridge Bio-Medical Dataset, 5 from
RSCTC’2010 Discovery Challenge, 4 from Broad institute Cancer Program Data
Sets, 3 from Feature Selection Datasets at Arizona State University. Some datasets
were multi-labeled, therefore we splitted them into several derivative binary
datasets with commonly used one-versus-all technique. Then we excluded datasets
that contained too few instances of one of the classes. After that, we used stan-
dard feature scaling and discretized all features to 11 different values from -5 to
5.

5 Results

Table below contains experiment results. All the datasets are sorted by their total
size which is basically a multiplication of their features and objects number. In
F1 score comparison of MeLiF and MeLiF+ better results for each dataset are
highlighted in grey, equal results are not highlighted. Runtime is presented in
seconds. At the last column, z-score is provided.

Table 1: MeLiF in comparison with swarm algorithms

Dataset Size
F1 score Time

z-score
MeLiF MeLiF+ MeLiF MeLiF+

SRBCT30 191k 0.900 0.891 13 2 0.23
SRBCT31 191k 1.000 1.000 17 3 0
GDS2960 417k 0.971 0.980 33 7 -10.98

CNS 427k 0.742 0.791 33 6 -1.06
Leuk3c0 513k 0.986 0.986 34 5 0
Leuk3c1 513k 0.933 0.933 33 5 0
GDS2961 566k 0.845 0.845 49 13 0
GDS2962 566k 0.784 0.887 45 11 -11.15
DLBCK 962k 0.799 0.734 65 13 4,67
GDS2901 1337k 1.000 1.000 88 17 0
Prostate 1713k 0.925 0.903 93 34 7.27
GDS4109 1760k 0.936 0.936 142 38 0
GDS5083 2131k 0.862 0.862 195 60 0
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d2t0 2339k 0.765 0.765 172 71 0
d2t1 2339k 0.779 0.844 180 60 -9.73

breast 2346k 0.769 0.812 161 24 -11.71
GDS4261 2367k 1.000 1.000 130 16 0
GDS3257 2384k 0.980 1.000 131 17 -33.65
GDS4901 2515k 0.899 0.946 220 60 -7.6
GDS3553 2543k 1.000 1.000 142 18 0
GDS3116 2584k 0.826 0.826 142 23 0
GDS4336 2598k 0.865 0.865 200 66 0
GDS5047 2925k 0.989 0.989 185 41 0
GDS3995 3200k 1.000 1.000 181 24 0

GDS496840 3296k 0.890 0.890 226 40 0
GDS496841 3296k 0.953 0.936 224 40 4.04
GDS2947 3499k 1.000 1.000 217 28 0
GDS43181 3591k 0.913 0.913 275 64 0
arizona5 3738k 0.730 0.754 219 67 -7.47
Ovarian 3833k 1.000 1.000 192 23 0

GDS4103 4264k 0.918 0.918 265 71 0
GDS2771 4265k 0.760 0.760 299 81 0

GDS503730 4428k 0.738 0.826 243 140 -16.77
GDS503732 4428k 0.782 0.782 293 69 0
GDS3929 4488k 0.821 0.821 376 74 0

GDS483731 4811k 0.920 0.920 413 130 0
GDS483733 4811k 0.951 0.951 316 48 0

d5t 4860k 0.869 0.869 370 70 0
GDS3622 4961k 1.000 1.000 266 33 0
GDS2819 5412k 0.991 1.000 436 149 -4.05

d6t 5428k 0.792 0.792 381 69 0
GDS413O 5685k 1.000 1.000 315 39 0

d4t 6178k 0.719 0.719 513 124 0
GDS4129 6561k 1.000 1.000 354 43 0
GDS4222 7107k 0.965 0.971 454 84 -7.42
GDS4431 7973k 0.802 0.802 537 100 0
arizona1 8847k 0.823 0.823 558 85 0
GDS4600 9294k 0.979 0.968 472 124 23.27
GDS3244 9787k 1.000 1.000 505 65 0

As it can be seen from the table above, MeLiF+ is always at least 3 times
faster than the MeLiF, and this difference gets up to 6 times for some datasets.
Although MeLiF and MeLiF+ have almost the same results in F1 score, there is
some difference in their work on 15 datasets as provided via z-score. But only in
5 cases MeLiF+ had worse results than original the MeLiF algorithm. But on 36
datasets, they performed equally and at 11 datasets new algorithm outperformed
the original one.
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6 Conclusion

The proposed parallelization scheme made algorithm in average to work 5.5
times faster without affecting selection quality. Unforunately, in this research
we did not achieved linear speed improvement because of the fixed maximum
of parallel processed points. In our future work, we are planning to use threads
pool which is limited by the testing system and achieve linear speed growth with
using exploration and exploitation [7] strategy to spread the search points in the
search space. Also this should lead to high increase in optimized measure.
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