Efficient Support Vector Machine Classification Using Prototype Selection and Generation

Abstract : Although Support Vector Machines (SVMs) are considered effective supervised learning methods, their training procedure is time-consuming and has high memory requirements. Therefore, SVMs are inappropriate for large datasets. Many Data Reduction Techniques have been proposed in the context of dealing with the drawbacks of k-Nearest Neighbor classification. This paper adopts the concept of data reduction in order to cope with the high computational cost and memory requirements in the training process of SVMs. Experimental results illustrate that Data Reduction Techniques can effectively improve the performance of SVMs when applied as a preprocessing step on the training data.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.328-340, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_28〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557605
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:09
Dernière modification le : lundi 30 juillet 2018 - 12:02:02
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 03:26:19

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Stefanos Ougiaroglou, Konstantinos Diamantaras, Georgios Evangelidis. Efficient Support Vector Machine Classification Using Prototype Selection and Generation. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.328-340, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_28〉. 〈hal-01557605〉

Partager

Métriques

Consultations de la notice

43