Convolutional Neural Networks for Pose Recognition in Binary Omni-directional Images

Abstract : In this work, we present a methodology for pose classification of silhouettes using convolutional neural networks. The training set consists exclusively from the synthetic images that are generated from three-dimensional (3D) human models, using the calibration of an omni-directional camera (fish-eye). Thus, we are able to generate a large volume of training set that is usually required for Convolutional Neural Networks (CNNs). Testing is performed using synthetically generated silhouettes, as well as real silhouettes. This work is in the same realm with previous work utilizing Zernike image descriptors designed specifically for a calibrated fish-eye camera. Results show that the proposed method improves pose classification accuracy for synthetic images, but it is outperformed by our previously proposed Zernike descriptors in real silhouettes. The computational complexity of the proposed methodology is also examined and the corresponding results are provided.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.106-116, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_10〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557611
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:13
Dernière modification le : vendredi 1 décembre 2017 - 01:16:27
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 01:38:02

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

S. Georgakopoulos, K. Kottari, K. Delibasis, V. Plagianakos, I. Maglogiannis. Convolutional Neural Networks for Pose Recognition in Binary Omni-directional Images. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.106-116, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_10〉. 〈hal-01557611〉

Partager

Métriques

Consultations de la notice

26