Musical Track Popularity Mining Dataset

Abstract : Music Information Research requires access to real musical content in order to test efficiency and effectiveness of its methods as well as to compare developed methodologies on common data. Existing datasets do not address the research direction of musical track popularity that has recently received considerate attention. Existing sources of musical popularity do not provide easily manageable data and no standardised dataset exists. Accordingly, in this paper we present the Track Popularity Dataset (TPD) that provides different sources of popularity definition ranging from 2004 to 2014, a mapping between different track/author/album identification spaces that allows use of all different sources, information on the remaining, non popular, tracks of an album with a popular track, contextual similarity between tracks and ready for MIR use extracted features for both popular and non-popular audio tracks.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.562-572, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_50〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557622
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:22
Dernière modification le : vendredi 1 décembre 2017 - 01:16:26
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 02:16:58

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ioannis Karydis, Aggelos Gkiokas, Vassilis Katsouros. Musical Track Popularity Mining Dataset. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.562-572, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_50〉. 〈hal-01557622〉

Partager

Métriques

Consultations de la notice

48