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Abstract. In this work, an Artificial Neural Network (ANN) is devel-
oped to improve the performance of Space Vector Modulation (SVM)
based Direct Torque Controlled (DTC) Induction Motor (IM) drive.
The ANN control algorithm based on Scaled Conjugate Gradient (SCG)
method is developed. The algorithm is tested on MATLAB Simulink
platform. Results show smooth steady state operation as well as fast
and dynamic transient performance. This is due to the SCG training
algorithm of ANN which has the benchmarked performance against the
standard Back-propagation (BP) algorithm. BP uses gradient descent
optimization theory which has user selected parameters; learning rate
and momentum constant. The network is trained offline and has fixed
parameters. This leads to extra control effort and demands for online
tuning of the parameters. SCG algorithm tunes these parameters with
the use of second order approximation. Additionally, it takes less learning
iterations and hence results in faster learning. Robustness to parameter
variations and disturbances is the basic advantage of ANN, thus effec-
tively controlling inherently non linear IM.

1 Introduction

The Direct Torque Control (DTC) [1] and Space Vector Modulated-Direct Torque
Control (SVM-DTC) [2]- [3] are the latest research technologies for the VSI fed
cage IMs. Both, being the special cases of vector control, have the fast and dy-
namic transient responses. The former has PWM-free operation and involves
no coordinate transformation but 20-30% steady state torque ripple; whereas
the later has SVM based PWM, with coordinate transformation but less torque
ripple upto 5-7 % . The research in SVM-DTC controlled IM drives is further
advanced with respect to-

– Sensorless operation [4].
– Generation of reference stator voltage control vectors [5].
– Stator resistance compensation at low speeds [6].

Modern control techniques like Sliding Mode Control (SMC) and intelligent
control [7]- [8] are used to address the three issues mentioned above. Perfor-
mances of various methods are compared [9] for control vector generation.



Out of the methods reported, PI has known demerits. An approach proposed
in [10] gives excellent torque response and also very low torque distortions in
static state, but has complex fuzzy structure. The chattering behavior of SVM
can be eliminated by using ANN [11]. Apart from variety of techniques in DTC,
SVM-DTC techniques based on neuro-fuzzy logic are also discussed and com-
pared with the conventional motor control schemes [12]. Intelligent control has
benefits of model-free control and hence it is robust [13]. With these advance-
ments in intelligent control techniques, ANN is not restricted to be used as sepa-
rate controller. Rather, it can be combined with other techniques to enhance the
performance of the drive as in [14] , where Field Oriented Control (FOC) and
DTC [15] are combined to make a hybrid network and both the schemes FOC
and DTC are mapped using two different ANNs. In [16], ANN is reported in con-
trol voltage vector loop. It can be seen that the ripple in torque with ANN-DTC
control is very less as compared to conventional DTC at the same operating
conditions [17]. In case of ANN based control, Resilient Backpropagaton (RBP)
and Levenberg-Marquardt (LM) [18] algorithms are very popular.

This paper presents another approach for training the ANN for the Space
Vector Modulated- Direct Torque Control (SVM-DTC) based induction motor
drive. The training algorithm used is Scaled Conjugate Gradient (SCG). The
basic idea in this algorithm is to combine the model-trust region approach (used
in the Levenberg-Marquardt algorithm), with the conjugate gradient approach
[19].

Fig. 1: ANN based SVM-DTC Scheme

2 ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANNs) have capability of recognizing the non-linear
functions of their inputs. They can represent a non-linear system to the nearest



possible approximation. Hence, in non-linear systems, which are difficult to con-
trol, the performance of conventional PI controller, in conditions like change in
loads, disturbance and uncertainties can be improved by ANN [13].

Basically, it consist of neurons to represent inputs and outputs variables as
well as intermediate layers which are interconnected via weights.The performance
of ANNs depend upon the type of algorithm used, the number of neurons in the
hidden layer, learning rate and the type of member function implied.

Various performance determining factors of ANNs are:

– Mean Square Error (MSE)

– Number of epochs

– Training Time
– Validation checks

– Gradient

2.1 Resilient Backpropagation (RBP) Algorithm

Resilient Backpropagation (RBP) is most suitable for pattern recognition prob-
lems. It utilizes the sign of derivative for the direction of weight update; that
is, the magnitude of the derivative does not affect the weight-updating process.
This eliminates the harmful effects of the magnitude of derivatives.

It generally converges much faster than other algorithms. In MATLAB,
’trainrp’ function is used to train network by RBP algorithm.

The use of constant step size and involvement of a momentum term makes
RBP less robust and more parameter dependent.

2.2 Scaled Conjugate Gradient (SCG) Algorithm

The scaled conjugate gradient (SCG) algorithm, developed by Moller [Moll93], is
based on conjugate directions, but this algorithm does not perform a line search
at each iteration unlike other conjugate gradient algorithms which require a line
search at each iteration. Making the system computationally expensive. SCG
was designed to avoid the time-consuming line search.

’trainscg’ in MATLAB is a network training function that updates weight and
bias values according to the scaled conjugate gradient method. It can train any
network as long as its weight, net input, and transfer functions have derivative
functions. In SCG algorithm, the step size is a function of quadratic approxima-
tion of the error function which makes it more robust and independent of user
defined parameters.

The step size is estimating using different approach. The second order term
is calculated as,

s̄k =
E′(w̄k + σkp̄k)− E′(w̄k)

σk

+ λkp̄k (1)

where, λk is a scalar and is adjusted each time according to the sign of δk.



The step size,

αk =
µk

δk
=

−p̄j
TE′

qw(ȳ1)

p̄jTE′′(w̄)p̄j
(2)

where, w̄ is weight vector in space Rn,
E(w̄) is the global error function,
E′(w̄) is the gradient of error,
E′

qw(ȳ1) is the quadratic approximation of error function,
p̄1, p̄2....p̄k be the set of non-zero weight vectors.
λk is to be updated such that,

λ̄k = 2(λk −
δk
¯

|pk|
2
) (3)

If ∆k > 0.75, then λk=λk/4

If ∆k < 0.25, then λk=λk +
δk(1−∆k)

¯|pk|
2

where, ∆k is comparison parameter and is given by,

∆k = 2δk[E(w̄k)− E(w̄k + αkp̄k)]/µ
2
k (4)

Initially the values are set as, 0 < σ ≤ 10−4, 0 < λl ≤ 10−6 and λ̄l = 0 .
Training stops when any of these conditions occurs:

– The maximum number of epochs is reached.
– The maximum amount of time is exceeded.
– Performance is minimized to the goal.
– The performance gradient falls below min-grad.
– Validation performance has increased more than max-fail times since the last

time it decreased (when using validation) [20].

3 Simulation Results

A three phase induction motor with frequency = 50 Hz and power rating 3.5kW
is used. The various machine parameters are given as,
Stator resistance (rs)=7.83 Ω
Rotor resistance (rr)=7.55 Ω
Stator inductance (Ls)=0.4751 H
Rotor inductance (Lr)=0.4751 H
Mutual inductance (Lm)=0.4535 H
No. of Poles (P)=4
Inertia (J)=0.013 kg-m2

Torque of 12 Nm is applied at 0.5 seconds. A comparison has been done
between the two algorithms Resilient Backpropogation (RBP) and Scaled Con-
jugate Gradient (SCG) method.

SCG has been tried for various cases. Each time the conditions were varied
and results are verified.



(a) RBP (b) SCG

Fig. 2: Performance Plot for the two algorithms

– Case I The reference speed is kept to be zero.

– Case II A sinusoidal disturbance of amplitude 0.001 and high frequency is
added in the torque and flux errors.

– Case III The stator resistance is increased to 150 % .

– Case IV The reference speed is kept to be 100 rad/sec.

– Case V Speed is constant and torque is changed to zero at 0.7 sec.

– Case VI Torque is constant and speed is changed from 100 rad/sec to 50
rad/sec at 0.8 sec.

Results have been shown as a comparison between the two.
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Fig. 3: Full load torque condition for Case I
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Fig. 4: Speed for the conditions referred in Case I
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Fig. 5: Stator input current for both algorithms in Case I
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Fig. 6: Flux Circle for the two algorithms



Table 1: Comparison of the two algorithms in Case I

Parameter RBP SCG

Settling time 0.0357 sec 0.0016 sec

Full load steady state speed error 1-2 rpm 1-2 rpm

Full load torque error 2-3 Nm 0-1 Nm

THD 206.64% 78.42%

Input norm ‖Isa‖ 217.17 203.84

Mean Square Error (MSE) 281.13 229.19

Epochs 280 36
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Fig. 7: Current transients for Case II
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Fig. 8: Current transients for Case III

4 Observations

It is seen from fig.2 that the number of epochs required for least mean square
error (MSE) is 280 for RBP while only 36 for SCG. Also, it is clear from Case I
that total harmonic distortion (THD) is more in case of RBP than that of SCG.
Fig.4 and fig.5 show that there exists undershoot in both speed and current
graphs for RBP unlike SCG which has smooth transients. The steady state
error in case of speed, current and torque is less in case of SCG as depicted by
fig.14, 15 and 16.
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Fig. 9: Stator input current for both the algorithms in Case IV
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Fig. 10: Full load torque condition for Case IV
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Fig. 11: Speed for the conditions referred in Case IV
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Fig. 12: Torque developed in Case V
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Fig. 13: Speed for the conditions referred in Case V
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Fig. 14: Stator input current for both the algorithms in Case V

0 0.2 0.4 0.6 0.8 1 1.2
−60

−50

−40

−30

−20

−10

0

10

20

30

Time in sec

T
o

rq
u

e 
in

 N
m

 

 

RBP
SCG

Fig. 15: Torque developed in Case VI
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Fig. 16: Speed for the conditions referred in Case VI
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Fig. 17: Stator input current for both the algorithms in Case VI

(a) RBP

(b) SCG

Fig. 18: Selected stator current in Case I for both algorithms

Fig. 19: Total Harmonic Distortion (THD) for RBP



Fig. 20: Total Harmonic Distortion (THD) for SCG

5 Conclusion

Both the algorithms provide fast initial convergence. But, the calculations and
training methods are different in both of them. Results show that the proposed
controller gives better results than RBP. When the torque is applied, SCG gives
more smooth transients with less peak overshoot and undershoot in case of
current and speed. That is, the control effort required in SCG is comparatively
less than that of RBP. Also, the total harmonic distortion and steady state errors
in torque and speed appear to be less in case of SCG as compared to RBP.
Though the computational efforts are more in SCG algorithm, it achieves faster
learning as against RBP algorithm due to the absence of line search optimization.
It is observed that the epochs for SCG are around 36 for best performance while
that of RBP, they are found to be around 280 which proves the superiority of
the algorithm.

This scheme can be implemented on hardware using dSPACE which produces
pulses to feed Voltage Source Inverter (VSI) which in turn runs the motor. The
scope of this scheme is not limited to only ANN, rather, it can be used in hybrid
with some other algorithm and also with Genetic Algorithm (GA) to improve
the transient response.
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