Increasing Diversity in Random Forests Using Naive Bayes

Abstract : In this work a novel ensemble technique for generating random decision forests is presented. The proposed technique incorporates a Naive Bayes classification model to increase the diversity of the trees in the forest in order to improve the performance in terms of classification accuracy. Experimental results on several benchmark data sets show that the proposed method archives outstanding predictive performance compared to other state-of-the-art ensemble methods.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.75-86, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_7〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557627
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:26
Dernière modification le : mardi 26 décembre 2017 - 16:40:06
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 01:35:55

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Christos Aridas, Sotiris Kotsiantis, Michael Vrahatis. Increasing Diversity in Random Forests Using Naive Bayes. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.75-86, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_7〉. 〈hal-01557627〉

Partager

Métriques

Consultations de la notice

77