G. Data, https://secure.gd/dl- us-mmwr201504, 2015.

B. Amos, H. Turner, and J. White, Applying machine learning classifiers to dynamic Android malware detection at scale, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp.1666-1671, 2013.
DOI : 10.1109/IWCMC.2013.6583806

M. Christodorescu and S. Jha, Static analysis of executables to detect malicious patterns, Proceedings of the 12th conference on USENIX Security Symposium, pp.12-12, 2003.

K. Demertzis and L. Iliadis, SAME: An Intelligent Anti-malware Extension for Android ART Virtual Machine, Computational Collective Intelligence: 7th International Conference Part II, pp.235-245, 2015.
DOI : 10.1145/1656274.1656278

K. Demertzis and L. Iliadis, Bio-inspired Hybrid Intelligent Method for Detecting Android Malware, Knowledge, Information and Creativity Support Systems: Selected Papers from KICSS'2014, pp.289-304, 2016.
DOI : 10.1007/978-3-319-27478-2_20

M. Egele, T. Scholte, E. Kirda, and C. Kruegel, A survey on automated dynamic malware-analysis techniques and tools, ACM Computing Surveys, vol.44, issue.2, pp.1-642, 2012.
DOI : 10.1145/2089125.2089126

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Jacob, H. Debar, and E. F. , Behavioral detection of malware: from a survey towards an established taxonomy, Journal in Computer Virology, vol.3548, issue.3, pp.251-266, 2008.
DOI : 10.1007/s11416-008-0086-0

K. Griffin, S. Schneider, X. Hu, and T. C. Chiueh, Automatic Generation of String Signatures for Malware Detection, Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection, pp.101-120, 2009.
DOI : 10.1007/978-3-642-04342-0_6

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

A. Joshua, O. V. Waziri, M. B. Abdullahi, U. M. Arthur, and O. S. Adewale, A machine learning approach to anomaly-based detection on android platforms, International Journal of Network Security and Its Applications, vol.7, issue.6, pp.15-35, 2015.

E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, Improving malware detection by applying multi-inducer ensemble, Computational Statistics & Data Analysis, vol.53, issue.4, pp.1483-1494, 2009.
DOI : 10.1016/j.csda.2008.10.015

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Moser, C. Kruegel, and E. Kirda, Limits of Static Analysis for Malware Detection, Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pp.421-430, 2007.
DOI : 10.1109/ACSAC.2007.21

R. Moskovitch, Y. Elovici, and L. Rokach, Detection of unknown computer worms based on behavioral classification of the host, Computational Statistics & Data Analysis, vol.52, issue.9, pp.4544-4566, 2008.
DOI : 10.1016/j.csda.2008.01.028

I. Nouretdinov, V. Vovk, M. V. Vyugin, and A. Gammerman, Pattern Recognition and Density Estimation under the General i.i.d. Assumption, Proceedings of the 14th Annual Conference on Computational Learning Theory and 5th European Conference on Computational Learning Theory, pp.337-353, 2001.
DOI : 10.1007/3-540-44581-1_22

H. Papadopoulos, Inductive Conformal Prediction: Theory and application to neural networks Tools in Artificial Intelligence, chap, InTech, vol.18, pp.315-3305294, 2008.
DOI : 10.5772/6078

URL : http://www.intechopen.com/download/pdf/5294

H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman, Inductive Confidence Machines for Regression, Proceedings of the 13th European Conference on Machine Learning (ECML'02). LNCS, pp.345-356, 2002.
DOI : 10.1007/3-540-36755-1_29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, Learning and Classification of Malware Behavior, Proceedings of the 5th International Conference on Detection of Intrusions and Malware, and vulnerability Assessment, pp.108-125, 2008.
DOI : 10.1007/978-3-540-70542-0_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Sahs and L. Khan, A Machine Learning Approach to Android Malware Detection, 2012 European Intelligence and Security Informatics Conference, pp.141-147, 2012.
DOI : 10.1109/EISIC.2012.34

A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey, Information Security Technical Report, vol.14, issue.1, pp.16-29, 2009.
DOI : 10.1016/j.istr.2009.03.003

V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, 2005.