Exemplar Selection via Leave-One-Out Kernel Averaged Gradient Descent and Subtractive Clustering

Abstract : Scalable data mining and machine learning require data abstractions. This work presents a scheme for automatic selection of representative real data points as exemplars. Currently few algorithms can select representative exemplars from the data. K-medoids and Affinity Propagation are such algorithms. K-medoids requires the number of exemplars to be given in advance, as well as a dissimilarity matrix in memory. Affinity propagation automatically finds exemplars as well as their k number but it requires a similarity matrix in memory. A fast algorithm, which works without the need of any matrix in memory, is Subtractive Clustering, but it requires user-defined bandwidth parameters. The essence of the proposed solution relies on a leave-one-out kernel averaged gradient descent that automatically estimates a suitable bandwidth parameter from the data in conjunction with Subtractive Clustering algorithm that further uses this bandwidth for extracting the most representative exemplars, without initial knowledge of their number. Experimental simulations and comparisons of the proposed solution with Affinity propagation exemplar selection on various benchmark datasets seem promising.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.292-304, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_25〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557629
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:27
Dernière modification le : lundi 30 juillet 2018 - 12:02:02
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 02:45:26

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yiannis Kokkinos, Konstantinos Margaritis. Exemplar Selection via Leave-One-Out Kernel Averaged Gradient Descent and Subtractive Clustering. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.292-304, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_25〉. 〈hal-01557629〉

Partager

Métriques

Consultations de la notice

37