
HAL Id: hal-01557632
https://inria.hal.science/hal-01557632

Submitted on 6 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Intelligent Internet Search Assistant Based on the
Random Neural Network

Will Serrano, Erol Gelenbe

To cite this version:
Will Serrano, Erol Gelenbe. An Intelligent Internet Search Assistant Based on the Random Neural
Network. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations
(AIAI), Sep 2016, Thessaloniki, Greece. pp.141-153, �10.1007/978-3-319-44944-9_13�. �hal-01557632�

https://inria.hal.science/hal-01557632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An Intelligent Internet Search Assistant based on the

Random Neural Network

Will Serrano
2
 and Erol Gelenbe

1
,

Intelligent Systems and Networks Group, Electrical and Electronic Engineering

Imperial College London

1
 e.gelenbe@imperial.ac.uk

2
 g.serrano11@imperial.ac.uk

Abstract. Even web services that are free of charge, typically offer access to

online information based on some form of economic interest of the web service

itself. Thus advertisers who put the information on the web will make a pay-

ment to the search services based on the clicks that their advertisements receive.

Thus end users cannot know that the results they obtain from Web search en-

gines are exhaustive, or that they actually respond to their needs. To fill the gap

between user needs and the information that is presented to them on the web,

Intelligent Search Assistants have been proposed to act at the interface between

users and search engines to present data to users in a manner that reflects their

actual needs or their observed or stated preferences. This paper presents an In-

telligent Internet Search Assistant based on the Random Neural Network that

tracks the user’s preferences and makes a selection on the output of one or more

search engines using the preference s that it has learned. We also introduce a

“relevance metric” to compare the performance of our Intelligent Internet

Search Assistant against a few search engines, showing that it provides better

performance.

Keywords: Intelligent Internet Search Assistant; World Wide Web; Random

Neural Network; Web search; Search Engines

1 Introduction

The need to search for specific information in the ever expanding Internet has led the

development of Web search engines. Whereas their benefit is the provision of a direct

connection between users and the information or products sought, any search outcome

will be influenced by a commercial interest as well as by the users’ own ambiguity in

formulating their requests or queries. An example of this situation is travel services.

The Internet has made accessible real time travel industry’s information and services;

customers can purchase flight tickets, hotels and holiday packs online. Distribution

costs have been reduced due a shorter value chain; however businesses not shown on

mailto:g.serrano11@imperial.ac.uk

the top positions within the search results may lose potential customers. A similar

scenario also occurs within academic search; the Internet has allowed the democrati-

zation of academic publications. Authors can upload their work onto their personal

Webpages bypassing the traditional model of the journal peer review. There is the

biased interest from authors to get their publications in top search positions in order to

reach a bigger audience so they will be cited more. In both examples ranking algo-

rithms are essential as they decide the relevance; they make information visible or

hidden to customers or users. Under this model, Web search engines or recommender

systems can be tempted to artificially rank results from some specific businesses for a

fee whereas also authors or business can be tempted to manipulate ranking algorithms

by “optimizing” the presentation of their work or products. The main consequence is

that irrelevant results may be shown on top positions and relevant ones “hidden” at

the very bottom of the search list.

In order to address the presented search issues; this paper proposes an Intelligent In-

ternet Search Assistant (ISA) that acts as an interface between an individual user’s

query and the different search engines. Our ISA acquires a query from the user and

retrieves results from one or various search engines assigning one neuron per each

Web result dimension. The result relevance is calculated by applying our innovative

cost function based on the division of a query into a multidimensional vector

weighting its dimension terms with different relevance parameters. Our ISA adapts

and learns the perceived user’s interest and reorders the retrieved snippets based in

our dimension relevant centre point. Our ISA learns result relevance on an iterative

process where the user evaluates directly the listed results. We evaluate and compare

its performance against other search engines with a new proposed quality definition,

which combines both relevance and rank. We have also included two learning algo-

rithms; Gradient Descent learns the centre of relevant dimensions and Reinforcement

Learning updates the network weights based on rewarding relevant dimensions and

punishing irrelevant ones. We have validated our ISA against other Web search en-

gines and metasearch engines using travel services and open user queries. We have

also analysed the Gradient Descent and Reinforcement Learning algorithms based on

result relevance and learning speed.

We describe the application of neural networks in Web search in section 2. We define

our Intelligent Internet Search Assistant mathematical model in Section 3 and we have

validated it against other Web search engines in Section 4. Finally, we present our

conclusions in Section 5.

2 Related work

The ability of neural networks to learn iteratively from different inputs to acquire the

desired outputs as a mechanism of adaptation to users’ interest in order to provide

relevant answers have already been applied in the World Wide Web and recommend-

er systems.

F. Scarselli et al [1] and M. Chau et al [2] use a neural network by assigning a neuron

to each Web page; they create a graph where the neural links are the equivalent of the

hyperlinks. S. Bermejo et al [3] use a similar approach to our proposal, the allocation

of one neuron per Web search result, however the main difference is that the network

is trained to cluster results by meaning. C. Burgues et al [4] define RankNet which

uses neural networks to evaluate Web sites by training the neural network based on

query-document pairs. Shu, B. et al [5] retrieve results from different Web search

engines and train the network following the assumption that a result in a top position

would be relevant. J. Boyan et al [6] use reinforcement learning to rank Web pages

using their HTML properties and hyperlink connections between them. X. Wang et al

[7] use a back propagation neural network with its input nodes corresponding to an

specific quantified user profile and one output node which it is the a probability the

user would consider the Web page relevant.

3 The Intelligent Internet Search Assistant Model

The search assistant we design is based on the Random Neural Network (RNN) [8,

9,10]. This is a biologically inspired spiking recurrent stochastic model for neural

networks. Its main analytical properties are the “product form” and the existence of

the unique network steady state solution. The RNN represents more closely how sig-

nals are transmitted in many biological neural networks where they actual travel as

spikes or impulses, rather than as analogue signal levels. It has been used in different

applications including network routing with cognitive packet networks, using rein-

forcement learning, which requires the search for paths that meet certain pre-specified

quality of service requirements [11,17], search for exit routes for evacuees in emer-

gency situations [12,13], pattern based search for specific objects [14], video com-

pression [15], and image texture learning and generation [16].

3.1 Search Model

In the case of our own application of the RNN, the search for information or for some

meaning needs requires us to specify some elements: an M-dimensional universe of X

entities or ideas to be searched, a high level query that specifies the N-properties or

concepts requested by a user and a method that searches and selects Y entities from

the universe showing the first Z results to user according to an algorithm or rule. Each

entity or concept in the universe is distinct from the others in some recognizable way;

for instance two entities may be different just in the date or time-stamp that character-

izes the time when they were last stored or in the ownership or origin of the entities.

On the other hand, we consider concepts to be distinct if they contain any different

meaning, even though if they are identical with respect to a user’s query.

We consider that the universe which we are searching within as a relation U that con-

sists of a set of X M-tuples, U = {v1 , v2 … vX}, where vi = (li1 , li2 … liM) and li are

the M different attributes for i=1,2..X. The relation U is a very large relation consist-

ing on M >> N attributes. The important concept in the development of this paper is a

query can be defined as Rt(n(t)) = (Rt(1), Rt(2), …, Rt(n(t))) where n(t) is a variable

N-dimension attribute vector with 1<N<M and t is the search iteration being t>0; n(t)

is variable so that attributes can be added or removed based on their relevance as the

search progresses, i.e. as t increases. Each Rt(n(t)) takes its values from the attributes

within the domain D(n(t)), where D is the corresponding domain that forms the uni-

verse U. Thus D(n(t)) is a set of properties or meanings based in words or integers,

but also words in another language, or a set of icons, images or sounds.

The answer A to the query Rt(n(t)) is a set of Y M-tuples A = {v1 , v2 … vY} where vo

= (lo1 , lo2 … loM) and lo are the M different attributes for o=1,2..Y. Our Intelligent

Internet Search Assistant only shows to the user the first set of Z tuples that have the

highest neuron potentials among the set of Y tuples. The neuron potential that repre-

sents the relevance of each M-tuple vo is calculated at each t iteration. The user or the

high level query itself is limited mainly by two main factors: the user’s lack of infor-

mation about all the attributes that form the universe U of entities and ideas, or the

user’s lack of precise knowledge about what he is looking for.

3.2 Result Cost Function

We consider the universe U is formed of the entire results that can be searched. We

assign each result provided by a search engine to an M-tuple vo of the answer set A.

We calculate the result relevance based on a cost function described within this sec-

tion. The query Rt(n(t)) is a variable N-dimension vector that specifies the attributes

the user consider relevant. The number of dimensions of the attribute vector n(t) var-

ies as the iteration t increases. Our Intelligent Internet Search Assistant associates an

M-tuple vo to each result provided by the Search Engine creating an answer set A of Y

M-tuples. Search Engines select their results from the universe U. We apply our cost

function to each result or M-tuple vo from the answer set A of Y M-tuples. We con-

sider each vo as a M-dimensional vector. The cost function is firstly calculated based

on the relevant N attributes the user introduced on the High Level Query, R1(n(1))

within the domain D(n(1)) however, as the search progresses, Rt(n(t)), attributes may

be added or removed based on the perceived relevance within the domain D’(n(t)).

We calculate the overall Result Score, RS, by measuring the relationship between the

values of its different attributes:

 HWRVRS  (1)

where RV is the Result Value which measures the result relevance and HW the Ho-

mogeneity Weight. The Homogeneity Weight (HW) rewards results that have rele-

vance or scores dispersed along their attributes. This parameter is also based on the

idea that the first dimensions or attributes of the user query Rt(n(t)) are more im-

portant than the last ones:

N

HF[n]

HW

N

1n


 (2)

where HF[n], homogeneity factor, is a N-dimension vector associated to the result and

n is the attribute index from the query Rt(n(t)):

0SD[n] if0

0SD[n] if
N

n-N

HF[n]





 (3)

We define Score Dimension SD[n] as a N-dimension vector that represents the attrib-

ute values of each result or M-tuple vo in relation with the query Rt(n(t)). The Result

Value (RV) is the sum of each dimension individual score:

 



N

1n

SD[n]RV (4)

where n is the attribute index from the query Rt(n(t)). Each dimension of the Score

Dimension vector SD[n] is calculated independently for each n-attribute value that

forms the query Rt(n(t)):

 DPWRPWPPWSSD[n]  (5)

We consider only three different types of domains of interest: words, numbers (as for

dates and times) and prices. S is the score calculated depending if the domain of the

attribute is a word (WS), number (NS) or price (PS). If the domain D(n) is a word, our

ISA calculates the score Word Score (WS) following the formula:

NW

WR
S  (6)

where the value of WR is 1 if the word of the n-attribute of the query Rt(n(t)) is con-

tained in the search result or 0 otherwise. NW is the number of words in the search

result. If the domain D(n) is a number, our ISA selects the best Number Score (NS)

from the numbers they are contained within the search result that maximizes the cost

function:

NN

RVDV

RV-DV
-1

S






























 (7)

where DV is the value of the n-attribute of the query Rt(n(t)), RV is the value of a

number in the result and NN is the total number of numbers in the result. If the do-

main D(n) is a price, our ISA chooses the best Price Score (PS) from the prices in the

result that maximizes the cost function:

NP

RV

DV

S










 (8)

where DV is value of the n-attribute of the query Rt(n(t)), RV is the value of a price in

the result and NP is the total number of prices in the result. We penalize if the search

result provides unnecessary information by dividing the score by the total amount of

elements in the Web result. The dimension Score Dimension vector, SD[n] is

weighted according to different relevance factors:

 DPWRPWPPWSSD[n]  (9)

The Position Parameter Weight (PPW) is based on the idea that an attribute value

shown within the first positions of the search result is more relevant than if it is shown

at the final:

NC

DVP-NC
PPW (10)

where NC is the number of characters in the result and DVP is the position within the

result where the value of the dimension is shown. The Relevance Parameter Weight

(RPW) incorporates the user’s perception of relevance by rewarding the first attrib-

utes of the query Rt(n(t)) as highly desirable and penalising the last ones:

N

PD
1RPW  (11)

where PD is the position of the n-attribute of the query Rt(n(t)) and N is the total

number of dimensions of the query vector Rt(n(t)). The Dimension Parameter Weight

(DPW) incorporates the observation of user relevance with the value of domains

D(n(t)) by providing a better score on the domain values the user has more filled on

the query:

N

NDT
DPW (12)

where NDT is the number of dimensions with the same domain (word, number or

price) on the query Rt(n(t)) and N is the total number of dimensions of the query vec-

tor Rt(n(t)). We assign this final Result Score value (RS) to each M-tuple vo of the

answer set A. This value is used by our ISA to reorder the answer set A of Y M-

tuples, showing to the user the first set of Z results which have the higher potential

value.

3.3 User Iteration

The user, based on the answer set A can now act as an intelligent critic and select a

subset of P relevant results, CP, of A. CP is a set that consists of P M-tuples CP = {v1 ,

v2 … vP}. We consider vP as a vector of M dimensions; vp = (lp1 , lp2 … lpM) where lp

are the M different attributes for p=1,2..P. Similarly, the user can also select a subset

of Q irrelevant results, CQ of A, CQ = {v1 , v2 … vQ}. We consider vq as a vector of M

dimensions; vq = (lq1 , lq2 … lqM) where lq are the M different attributes for q=1,2..Q.

Based on the user iteration, our Intelligent Internet Search Assistant provides to the

user with a different answer set A of Z M-tuples reordered to MD, the minimum dis-

tance to the Relevant Centre for the results selected, following the formula:

P

l

P

[n]SD

RCP[n]

P

1p

pn

P

1p

p 


 (13)

where P is the number of relevant results selected, n the attribute index from the query

Rt(n(t)) and SDp[n] the associated Score Dimension vector to the result or M-tuple vP

formed of lpn attributes. An equivalent equation applies to the calculation of the Irrel-

evant Centre Point. Our Intelligent Internet Search Assistant reorders the retrieved Y

set of M-tuples showing only to the user the first Z set of M-tuples based on the low-

est distance (MD) between the difference of their distances to both Relevant Centre

Point (RD) and the Irrelevant Centre Point (ID) respectively:

 IDRDMD  (14)

where MD is the result distance, RD is the Relevant Distance and ID is the Irrelevant

Distance. The Relevant Distance (RD) of each result or M-tuple vq is formulated as

below:

  



N

1n

2
RCP[n]-SD[n]RD (15)

where SD[n] is the Score Dimension vector of the result or M-tuple vq and RCP[n] is

the coordinate of the Relevant Centre Point. Equivalent equation applies to the calcu-

lation of the Irrelevant Distance. Therefore we are presenting an iterative search pro-

gress that learns and adapts to the perceived user relevance based on the dimensions

or attributes the user has introduced on the initial query.

3.4 Dimension Learning

The answer set A to the query R1(n(1)) is based on the N dimension query introduced

by the user however results are formed of M dimensions therefore the subset of results

the user has considered as relevant may have other relevant concepts hidden the user

did not considered on the original query. We consider the domain D(m) or the M at-

tributes from which our universe U is formed as the different independent words that

form the set of Y results retrieved from the search engines. Our cost function is ex-

panded from the N attributes defined in the query R1(n(1)) to the M attributes that

form the searched results. Our Score Dimension vector, SD[m], is now based on M-

dimensions. An analogue attribute expansion is applied to the Relevance Centre Cal-

culation, RCP[m]. The query R1(n(1)) is based on the N-Dimension vector introduced

by the user however the answer set A consist of Y M-tuples. The user, based on the

presented set A, selects a subset of P relevant results, CP and a subset of Q irrelevant

results, CQ.

Let us consider CP as a set that consists of P M-tuples CP = {v1 , v2 … vP} where vP is

a vector of M dimensions; vP = (lp1 , lp2 … lpM) and lp are the M different attributes for

p=1,2..P. The M-dimension vector Dimension Average, DA[m], is the average value

of the m-attributes for the selected relevant P results:

P

l

P

[m]SD

DA[m]

P

1p

pm

P

1p

p 


 (16)

where P is the number of relevant results selected, m the attribute index of the relation

U and SDp[m] the associated Score Dimension vector to the result or M-tuple vP

formed of lpm attributes. We define ADV as the Average Dimension Value of the M-

dimension vector DA[m]:

M

DA[m]

ADV

M

1m


 (17)

where M is the total number of attributes that form the relation U. The correlation

vector σ[m] is the difference between the dimension values of each result with the

average vector:

   

P

DA[m] - l

P

DA[m] - [m]SD

σ[m]

P

1p

Pm

P

1p

p 


 (18)

where P is the number of relevant results selected, m the attribute index of the relation

U and SDp[m] the associated Score Dimension vector to the result or M-tuple vP

formed of lpm attributes. We define C as the average correlation value of the M-

dimensions of the vector σ[m]:

M

σ[m]

C

M

1m


 (19)

where M is the total number of attributes that form the relation U. We consider an m-

attribute relevant if its associated Dimension Average value DA[m] is larger than the

average dimension ADV and its correlation value σ[m] is lesser than the average cor-

relation C. We have therefore changed the relevant attributes of the searched entities

or ideas by correlating the error value of its concepts or properties represented as at-

tributes or dimensions. On the next iteration, the query R2(n(2)) is formed by the at-

tributes our ISA has considered relevant. The answer to the query R2(n(2)) is a differ-

ent set A of Y M-tuples. This process iterates until there are not new relevant results

to be shown to the user.

3.5 Gradient Descent Learning

Gradient Descent learning is based on the adaptation to the perceived user interests or

understanding of meaning by correlating the attribute values of each result to extract

similar meanings and cancel superfluous ones. The ISA Gradient Descent learning

algorithm is based on a recurrent model. The inputs i = {i1,…,iP} are the M-tuples vP

corresponding to the selected relevant result subset CP and the desired outputs y =

{y1,…,yP} are the same values as the input. Our ISA then obtains the learned random

neural network weights, calculates the relevant dimensions and finally reorders the

results according to the minimum distance to the new Relevant Centre Point focused

on the relevant dimensions.

3.6 Reinforcement Learning

The external interaction with the environment is provided when the user selects the

relevant result set CP. Reinforcement Learning adapts to the perceived user relevance

by incrementing the value of relevant dimensions and reducing it for the irrelevant

ones. Reinforcement Learning modifies the values of the m attributes of the results,

accentuating hidden relevant meanings and lowering irrelevant properties. We associ-

ate the Random Neural Network weights to the answer set A; W = A. Our ISA up-

dates the network weights W by rewarding the result relevant attributes by:



















 

M

1m

1-s
pm

1-s
pm1-s

pm
1-s

pm

l

l
*l l m)w(p, (20)

where p is the result or M-tuple vP formed of lpm attributes, m the result attribute in-

dex, M the total number of attributes and s the iteration number. ISA also updates the

network weights by punishing the result irrelevant attributes by:



















 

M

1m

1-s
pm

1-s
pm1-s

pm
1-s

pm
l

l
*l l m)w(p, (21)

where p is the result or M-tuple vP formed of lpm attributes, m the result attribute in-

dex, M the total number of attributes and s the iteration number. Our ISA then recal-

culates the potential of each of the result based on the updated network weights and

reorders them, showing to the user the results which have a higher potential or score.

4 Validation

The Intelligent Internet Search Assistant we have proposed emulates how Web search

engines work by using a very similar interface to introduce and display information.

We validate our ISA algorithm with a set of three different experiments. Users in the

experiments can both choose between the different Web search engines and the N

number of results they would to retrieve from each one. We propose the following

formula to measure Web search quality; it is based on the concept that a better search

engine provides with a list of more relevant results on top positions. In an list of N

results, we score N to the first result and 1 to the last result, the value of the quality

proposed is then the summation of the position score based of each of the selected

results. Our definition of Quality, Q, can be defined as:

 



Y

1i

iRSEQ (22)

where RSEi is the rank of the result i in a particular search engine with a value of N if

the result is in the first position and 1 if the result is the last one. Y is the total number

of results selected by the user. The best Web search engine would have the largest

Quality value. We define normalized quality, Q , as the division of the quality, Q, by

the optimum figure which it is when the user consider relevant all the results provided

by the Web search engine. On this situation Y and N have the same value:

2

1)N(N

Q
Q


 (23)

We define I as the quality improvement between a Web search engine and a refer-

ence:

QR

QR-QW
I  (24)

where I is the Improvement, QW is the quality of the Web search engine and QR is the
quality reference; we use the Quality of Google as QR in our validation exercise.

In our first experiment we have asked to our validators to search for different queries
using only Google; ISA provides with a set of reordered results from which the user
needs to select the relevant results. We show the average values for the 20 different
queries, the average number of results retrieved by Google and the average number of

results selected by the user. We represent the normalized quality of Google and ISA
with the improvement of our algorithm against Google. In our second experiment, ISA
provides with a reordered list from where the user needs to select which results are
relevant. Our ISA reorders the results using the dimension relevant centre point provid-
ing to the user with another reordered result list from where the user needs to select the
relevant ones. We show the average values for the 16 different queries, the average
number of results selected by the user and the average number of results selected. We
also represent the normalized quality of Google, ISA and the ISA with the relevant
circle iteration including the improvement against Google in both scenarios. In our
third experiment, validators can select from which Web search engine they would their
results to be retrieved from; as in our first experiment, the users need to select the rele-
vant results. Our ISA combines the results retrieved from the different Web search
engines selected. We present the average values for the 18 different queries. We show
the normalized quality of each Web search engine selected including our ISA; because
users can choose any Web search engine; we are not introducing the improvement
value as we do not have a unique reference Web search engine.

Table 1. Web Search Engine Validation

Experiment 1 – 20 Queries

Results

retrieved

Results

selected
Google Q ISA Q ISA I ISA Circle Q ISA Circle I

19.35 8.05 0.4626 0.4878 15.39% - -

Experiment 2 – 16 Queries

Results

retrieved

Results

selected
Google Q ISA Q ISA I ISA Circle Q ISA Circle I

21.75 8.75 0.4451 0.4595 18% 0.4953 26%

Experiment 3 – 18 Queries

Web Google Yahoo Ask Lycos Bing ISA

Q 0.2691 0.2587 0.3454 0.3533 0.3429 0.4448

4.1 ISA Learning

Users in the experiments can choose between Google and Bing with either Gradient

Descent or Reinforcement Learning type. Our ISA then collects the first 50 results

from the Web search engine selected, reorders them according to its cost function and

finally show to the user the first 20 results. We consider 50 results is a good approxi-

mation of search depth as more results can add clutter and irrelevance; 20 results is

the average number of results read by a user before he launches another search if he

does not find any relevant one. ISA reorders results while learning on the two step

iterative process showing only the best 20 results to the user. We present the average

Quality values of the Web search engine and ISA for the 29 different queries searched

by different users, the learning type and the Web search engine used. The first I repre-

sents the improvement from ISA against the Web search; the second I is between ISA

iterations 2 and 1 and finally the third I is between the ISA iterations 3 and 2.

Table 2. ISA Learning Validation

Gradient Descent Learning: 17 Queries

Web ISA I Web ISA I Web ISA I

0.41 0.58 43% 0.45 0.61 14% 0.46 0.62 8%

Reinforcement Learning: 12 Queries

Web ISA I Web ISA I Web ISA I

0.42 0.57 34% 0.47 0.67 36% 0.49 0.68 0.0%

5 Conclusions

We have proposed a novel approach to Web search where the user iteratively trains

the neural network while looking for relevant results. We have also defined a different

process; the application of the Random Neural Network as a biological inspired algo-

rithm to measure both user relevance and result ranking based on a predetermined

cost function. Our Intelligent Internet Search Assistant performs generally slightly

better than Google and other Web search engines however, this evaluation may be

biased because users tend to concentrate on the first results provided which were the

ones we showed in our algorithm. Our ISA adapts and learns from user previous rele-

vance measurements increasing significantly its quality and improvement within the

first iteration. Reinforcement Learning algorithm performs better than Gradient De-

scent. Although Gradient Descent provides a better quality on the first iteration; Rein-

forcement Learning outperforms on the second one due its higher learning rate. Both

of them have a residual learning on their third iteration. Gradient Descent would have

been the preferred learning algorithm if only one iteration is required; however Rein-

forcement Learning would have been a better option in the case of two iterations. It is

not recommended three iterations because learning is only residual.

References

1. Scarselli, F., Liang, S., Hagenbuchner, M., Chung, A.: Adaptive page ranking with neural

networks. Proceeding WWW '05 Special interest tracks and posters of the 14th interna-

tional conference on World Wide Web, 936- 937 (2005)

2. Chau, M., Chen, H.: Incorporating Web analysis into neural networks: an example in Hop-

field net searching. IEEE transactions on systems and cybernetics – Part C: applications

and reviews, Vol 37, No 3, 352-358 (2007)

3. Bermejo, S., Dalmau, J.: Web metasearch using unsupervised neural networks. IWANN '03

Proceedings of the 7th International work-conference on artificial and natural neural net-

works: Part II: artificial neural nets problem solving methods, 711-718 (2003)

4. Burgues, C., Shaked, T., Renshaw, E., Lazier, L., Deeds, M., Hamilton, N., Hullender, G.:

Learning to rank using gradient descent. ICML '05 Proceedings of the 22nd international

conference on machine learning, 89-96 (2005)

5. Shu, B., Kak, S.: A neural network-based intelligent metasearch engine. Information sci-

ences, informatics and computer science, Vol 120, 1-11 (2009)

6. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing Web

search engines. Proceedings of the AAAI workshop on Internet-based information systems

(1996)

7. Wang, X., Zhang, L.: Search engine optimization based on algorithm of BP neural net-

works. Proceedings of the seventh international conference on computational intelligence

and security, 390-394 (2011)

8. Gelenbe, E.: Random neural network with negative and positive signals and product form

solution” Neural Computation 1, 502-510 (1989)

9. Gelenbe, E.: Learning in the recurrent Random Neural Network. Neural Computation. 5,

154-164 (1993)

10. Gelenbe, E., Timotheou, S.: Random neural networks with synchronized interac-

tions. Neural Computation, 20(9): 2308 – 2324 (2008)

11. Gelenbe, E., Lent, R., Xu, Z.: Towards networks with cognitive packets. Performance and

QoS of next generation networking. pp 3-17, Springer (London), (2011)

12. Gelenbe, E., Wu, F.J.: Large scale simulation for human evacuation and rescue. Comput-

ers & Mathematics with Applications 64 (12), 3869-3880 (2012)

13. Filippoupolitis, A., Hey, L., Loukas, G., Gelenbe, E., Timotheou, S.: Emergency response

simulation using wireless sensor networks. Proceedings of the 1st international conference

on Ambient media and systems, 21, (2008)

14. Gelenbe, E., Koçak, T.: Area-based results for mine detection. Geoscience and Remote

Sensing, IEEE Transactions on 38 (1), 12-24 (2000)

15. Cramer, C., Gelenbe, E., Bakircloglu, H.: Low bit-rate video compression with neural net-

works and temporal subsampling. Proceedings of the IEEE 84 (10), 1529-1543 (1996)

16. Atalay, V., Gelenbe, E., Yalabik, N.: The random neural network model for texture gener-

ation. International Journal of Pattern Recognition and Artificial Intelligence, 6 (1):131-

141 (1992)

17. Gelenbe, E.: Steps towards self-aware networks. Communications of the ACM, 52 (7), 66-

75, (2009)

18. Gelenbe, E.: Analysis of single and networked auctions. ACM Trans. On Internet Tech-

nology, 9 (2) (2009)

