Automated Determination of the Input Parameter of DBSCAN Based on Outlier Detection

Abstract : During the last two decades, DBSCAN (Density-Based Spatial Clustering of Applications with Noise) has been one of the most common clustering algorithms, that is also highly cited in the scientific literature. However, despite its strengths, DBSCAN has a shortcoming in parameter detection, which is done in interaction with the user, presenting some graphical representation of the data. This paper introduces a simple and effective method for automatically determining the input parameter of DBSCAN. The idea is based on a statistical technique for outlier detection, namely the empirical rule. This work also suggests a more accurate method for detecting the clusters that lie close to each other. Experimental results in comparison with the old method, together with the time complexity of the algorithm, which is the same as for the old algorithm, indicate that the proposed method is able to automatically determine the input parameter of DBSCAN quite reliably and efficiently.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.280-291, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_24〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01557638
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:34
Dernière modification le : mardi 20 mars 2018 - 14:48:32
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 03:02:19

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Zohreh Akbari, Rainer Unland. Automated Determination of the Input Parameter of DBSCAN Based on Outlier Detection. Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.280-291, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_24〉. 〈hal-01557638〉

Partager

Métriques

Consultations de la notice

87