E. Niedermeyer and F. L. Da-silva, Electroencephalography: basic principles, clinical applications , and related fields, 2005.

A. J. Casson, D. Yates, S. Smith, J. S. Duncan, and E. Rodriguez-villegas, Wearable Electroencephalography, IEEE Engineering in Medicine and Biology Magazine, vol.29, issue.3, pp.44-56, 2010.
DOI : 10.1109/MEMB.2010.936545

URL : http://spiral.imperial.ac.uk/bitstream/10044/1/5910/1/final_paper.pdf

D. Ariely and G. S. Berns, Neuromarketing: the hope and hype of neuroimaging in business, Nature Reviews Neuroscience, vol.35, issue.4, pp.284-292, 2010.
DOI : 10.3389/neuro.08.006.2009

B. He, B. Baxter, B. J. Edelman, C. C. Cline, and W. W. Ye, Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms, Proceedings of the IEEE, pp.907-925, 2015.
DOI : 10.1109/JPROC.2015.2407272

P. Wikström and R. Defillippi, Business Innovation and Disruption in the Music Industry, 2016.
DOI : 10.4337/9781783478156

L. Downes and P. Nunes, Big Bang Disruption, Harvard Business Review, pp.44-56, 2013.

A. D. Adamos, I. S. Dimitriadis, and A. N. Laskaris, Towards the bio-personalization of music recommendation systems: A single-sensor EEG biomarker of subjective music preference, Information Sciences, vol.343, issue.344, pp.343-344, 2016.
DOI : 10.1016/j.ins.2016.01.005

M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, 2014.

E. Altenmüller, Cortical DC-Potentials as Electrophysiological Correlates of Hemispheric Dominance of Higher Cognitive Functions, International Journal of Neuroscience, vol.18, issue.1-2, pp.1-14, 1989.
DOI : 10.1016/0028-3932(80)90127-X

H. Petsche, P. Ritcher, A. Von-stein, S. C. Etlinger, and O. Filz, EEG Coherence and Musical Thinking, Music Perception: An Interdisciplinary Journal, vol.11, issue.2, pp.117-151, 1993.
DOI : 10.2307/40285613

N. Birbaumer, W. Lutzenberger, H. Rau, C. Braun, and G. Mayer-kress, PERCEPTION OF MUSIC AND DIMENSIONAL COMPLEXITY OF BRAIN ACTIVITY, International Journal of Bifurcation and Chaos, vol.06, issue.02, p.267, 1996.
DOI : 10.1142/S0218127496000047

S. K. Hadjidimitriou and L. J. Hadjileontiadis, Toward an EEG-Based Recognition of Music Liking Using Time-Frequency Analysis, IEEE Transactions on Biomedical Engineering, vol.59, issue.12, pp.3498-3510, 2013.
DOI : 10.1109/TBME.2012.2217495

B. Schmidt and S. Hanslmayr, Resting frontal EEG alpha-asymmetry predicts the evaluation of affective musical stimuli, Neuroscience Letters, vol.460, issue.3, pp.237-240, 2009.
DOI : 10.1016/j.neulet.2009.05.068

S. Nakamura, N. Sadato, T. Oohashi, E. Nishina, Y. Fuwamoto et al., Analysis of music???brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects, Neuroscience Letters, vol.275, issue.3, pp.222-226, 1999.
DOI : 10.1016/S0304-3940(99)00766-1

J. Bhattacharya and H. Petsche, Musicians and the gamma band: a secret affair?, Neuroreport, vol.12, issue.2, pp.371-374, 2001.
DOI : 10.1097/00001756-200102120-00037

A. L. Schmidt and L. J. Trainor, Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions, Cognition & Emotion, vol.9, issue.4, pp.487-500, 2001.
DOI : 10.1162/jocn.1996.8.1.29

D. Sammler, M. Grigutsch, T. Fritz, and S. Koelsch, Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music, Psychophysiology, vol.20, issue.2, pp.293-304, 2007.
DOI : 10.1016/S0163-6383(98)90021-2

S. K. Hadjidimitriou and L. J. Hadjileontiadis, EEG-Based Classification of Music Appraisal Responses Using Time-Frequency Analysis and Familiarity Ratings, IEEE Transactions on Affective Computing, vol.4, issue.2, pp.161-172, 2013.
DOI : 10.1109/T-AFFC.2013.6

Y. Pan, C. Guan, J. Yu, K. K. Ang, and T. E. Chan, Common frequency pattern for music preference identification using frontal EEG, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp.505-508, 2013.
DOI : 10.1109/NER.2013.6695982

A. J. Coan and J. B. Allen, Frontal EEG asymmetry as a moderator and mediator of emotion, Biological Psychology, vol.67, issue.1-2, pp.7-50, 2004.
DOI : 10.1016/j.biopsycho.2004.03.002

T. R. Canolty and T. R. Knight, The functional role of cross-frequency coupling, Trends in Cognitive Sciences, vol.14, issue.11, pp.506-515, 2010.
DOI : 10.1016/j.tics.2010.09.001

I. S. Dimitriadis, A. N. Laskaris, P. M. Bitzidou, I. Tarnaras, and N. M. Tsolaki, A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses, Frontiers in Neuroscience, vol.2, issue.54, 2015.
DOI : 10.1016/j.nicl.2013.05.004

J. G. Szekely, L. M. Rizzo, and K. N. Bakirov, Measuring and testing dependence by correlation of distances. The Annals of Statistics, pp.2769-2794, 2007.

G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, vol.70, issue.1-3, pp.489-501, 2006.
DOI : 10.1016/j.neucom.2005.12.126

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. B. Huang, What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt???s Dream and John von Neumann???s Puzzle, Cognitive Computation, vol.2, issue.2, pp.263-278, 2015.
DOI : 10.1109/72.80341

M. Wright, A. Freed, and A. Momeni, Open Sound Control: state of the art 2003, NIME '03: Proceedings of the 3rd conference on New interfaces for Musical Expression, 2003.

M. T. Akhtar, T. P. Jung, S. Makeig, and G. Cauwenberghs, Recursive independent component analysis for online blind source separation, 2012 IEEE International Symposium on Circuits and Systems, pp.2813-2816, 2012.
DOI : 10.1109/ISCAS.2012.6271896

R. Want, B. N. Schilit, and S. Jenson, Enabling the Internet of Things, Computer, vol.48, issue.1, pp.28-35, 2015.
DOI : 10.1109/MC.2015.12

J. Miranda, N. Makitalo, J. Garcia-alonso, J. Berrocal, T. Mikkonen et al., From the Internet of Things to the Internet of People, IEEE Internet Computing, vol.19, issue.2, pp.40-47, 2016.
DOI : 10.1109/MIC.2015.24