Association Rules Mining by Improving the Imperialism Competitive Algorithm (ARMICA)

Abstract : Many algorithms have been proposed for Association Rules Mining (ARM), like Apriori. However, such algorithms often have a downside for real word use: they rely on users to set two parameters manually, namely minimum Support and Confidence. In this paper, we propose Association Rules Mining by improving the Imperialism Competitive Algorithm (ARMICA), a novel ARM method, based on the heuristic Imperialism Competitive Algorithm (ICA), for finding frequent itemsets and extracting rules from datasets, whilst setting support automatically. Its structure allows for producing only the strongest and most frequent rules, in contrast to many ARM algorithms, thus alleviating the need to define minimum support and confidence. Experimental results indicate that ARMICA generates accurate rules faster than Apriori.
Type de document :
Communication dans un congrès
Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.242-254, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_21〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557645
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 13:55:39
Dernière modification le : vendredi 1 décembre 2017 - 01:16:25

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

S. Ghafari, Christos Tjortjis. Association Rules Mining by Improving the Imperialism Competitive Algorithm (ARMICA). Lazaros Iliadis; Ilias Maglogiannis. 12th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2016, Thessaloniki, Greece. IFIP Advances in Information and Communication Technology, AICT-475, pp.242-254, 2016, Artificial Intelligence Applications and Innovations. 〈10.1007/978-3-319-44944-9_21〉. 〈hal-01557645〉

Partager

Métriques

Consultations de la notice

41