A. Bhandari, A. Gupta, and D. Das, Improvised Apriori Algorithm Using Frequent Pattern Tree for Real Time Applications in Data Mining, Proc. Int'l Conf. Information Communication Technologies (ICICT), pp.644-651, 2014.
DOI : 10.1016/j.procs.2015.02.115

H. R. Qodmanan, M. Nasiri, and B. Minaei-bidgoli, Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence, Expert Systems with Applications, vol.38, issue.1, pp.288-298, 2011.
DOI : 10.1016/j.eswa.2010.06.060

. L. Dong and . C. Tjortjis, Experiences of Using a Quantitative Approach for Mining Association Rules, Springer) Intelligent Data Engineering and Automated Learning, pp.693-700, 2003.
DOI : 10.1007/978-3-540-45080-1_93

. C. Wang and . C. Tjortjis, PRICES: An Efficient Algorithm for Mining Association Rules, Springer) Intelligent Data Engineering & Automated Learning, pp.352-358, 2004.
DOI : 10.1007/978-3-540-28651-6_52

R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules in Large Databases, VLDB '94 Proc. of the 20th Int'l Conf. on Very Large Data Bases, pp.487-499, 1994.

Y. Djenouri, H. Drias, and A. Chemchem, A Hybrid Bees Swarm Optimization and Tabu Search Algorithm for Association, IEEE World Congress on Nature and Biologically Inspired Computing (NaBIC), pp.120-125, 2013.
DOI : 10.1109/nabic.2013.6617849

R. Kuo, C. Chao, and Y. Chiu, Application of particle swarm optimization to association rule mining, Applied Soft Computing, vol.11, issue.1, pp.326-336, 2011.
DOI : 10.1016/j.asoc.2009.11.023

J. M. Nandhini, M. Janani, and S. N. Sivanandham, Association rule mining using swarm intelligence and domain ontology, 2012 International Conference on Recent Trends in Information Technology, pp.537-541, 2012.
DOI : 10.1109/ICRTIT.2012.6206763

E. Atashpaz-gargari, L. , and C. , Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, 2007 IEEE Congress on Evolutionary Computation, pp.4661-4667, 2007.
DOI : 10.1109/CEC.2007.4425083

R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD Conf. on Management of Data, pp.207-216, 1993.

D. L. Yang, C. T. Pan, C. , and Y. C. , An Efficient Hash-Based Method for Discovering the Maximal Frequent Set, Proc. 25 th Annual Int'l Computer Software and Applications Conf, pp.511-516, 2002.

J. S. Park, M. S. Chen, Y. , and P. S. , An Effective Hash Based Algorithm for Mining Association Rules, Proc. 1995 ACM SIGMOD Int'l Conf. on Management of data, pp.175-186, 1995.
DOI : 10.1145/568271.223813

URL : http://arbor.ee.ntu.edu.tw/paperps/smod95.ps

A. Savasere, E. Omiecinski, and S. Navathe, An Efficient Algorithm for Mining Association Rules in Large Databases, VLDB '95 Proc. 21th Int'l Conf. on Very Large Data Bases, pp.432-444, 1995.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, Dynamic Itemset Counting and Implication Rules for Market Basket Data, ACM SIGMOD Conf. on Management of Data, pp.255-264, 1997.
DOI : 10.1145/253260.253325

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Lin and Z. M. Kedem, Pincer-search: A new algorithm for discovering the maximum frequent set, Springer) VI Intl. Conf. on Extending Database Technology, pp.103-119, 1998.
DOI : 10.1007/BFb0100980

S. Talatahari, A. B. Farahmand, R. Sheikholeslami, and A. Gandomi, Imperialist competitive algorithm combined with chaos for global optimization, Communications in Nonlinear Science and Numerical Simulation, vol.17, issue.3, pp.1312-1319, 2012.
DOI : 10.1016/j.cnsns.2011.08.021

I. H. Witten, F. Eibe, and H. M. , Data mining, ACM SIGMOD Record, vol.31, issue.1, 2011.
DOI : 10.1145/507338.507355

K. Bache and M. Lichman, UCI machine learning repository, 2013.

J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, ACM SIGMOD int'l conf. on Management of data, pp.1-12, 2000.
DOI : 10.1145/342009.335372

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Scheffer, Finding Association Rules That Trade Support Optimally against Confidence, In: Principles of Data Mining and Knowledge Discovery, vol.2168, pp.424-435, 2001.
DOI : 10.1007/3-540-44794-6_35

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=