P. Vossen, L. Varel, and A. Devarenne, Olive fruit fly. University of California Cooperative Extension -Sonoma County, 2006.

R. Rice and B. S. Fletcher, Temperature development rate relationships of the immature stages and adults of tephritid fruit flies (eds) Fruit Flies, Their Biology, Natural Enemies and Control, vol.10, issue.3, pp.1-5, 1989.

V. Y. Yokoyama, P. Rendon, and J. Sivinski, Diptera: Tephritidae ) by Reseases of Psyttalia cf. concolor (Hymenoptera: Braconidae) in California, Parasitoid Longevity in Presence of the Host, and Host Status of Walnut Husk Fly, 7 th International Symposium on Fruit Flies of Economic Importance, pp.157-164, 2006.

G. D. Broufas, M. L. Pappas, and D. S. Koveos, Effect of Relative Humidity on Longevity, Ovarian Maturation, and Egg Production in the Olive Fruit Fly (Diptera: Tephritidae), Annals of the Entomological Society of America, vol.102, issue.1, pp.70-75, 2009.
DOI : 10.1603/008.102.0107

A. Patsias, EE Katapolmeesee tou THkou tee Elee [The Fighting of Olive fruit fly]. Publicity Department of Agricultural Sector Applications and Publicity, 2005.

M. Kubat, R. C. Holte, and S. Matwin, Machine Learning for the Detection of Oil Spills in Satellite Radar Images, Machine Learning, pp.195-215, 1998.

M. A. Acevedo, C. J. Corrada-bravo, H. Corrada-bravo, L. J. Villanueva-rivera, and T. M. Aide, Automated classification of bird and amphibian calls using machine learning: A comparison of methods, Ecological Informatics, vol.4, issue.4, pp.206-214, 2009.
DOI : 10.1016/j.ecoinf.2009.06.005

A. L. Pyayt, I. I. Mokhov, B. Lang, V. V. Krzhizhanovskaya, and R. J. Meijer, Machine Learning Methods for Environmental Monitoring and Flood Protection, World Academy of Science, Engineering and Technology, vol.78, pp.118-124, 2011.

R. J. Mcqueen, S. R. Garner, C. G. Nevill-manning, and I. H. Witten, Applying machine learning to agricultural data, Computers and Electronics in Agriculture, vol.12, issue.4, pp.275-293, 1995.
DOI : 10.1016/0168-1699(95)98601-9

S. Ahmad, A. Kalra, and H. Stephen, Estimating soil moisture using remote sensing data: A machine learning approach, Advances in Water Resources, vol.33, issue.1, pp.69-80, 2010.
DOI : 10.1016/j.advwatres.2009.10.008

R. S. Mitchell, R. A. Sherlock, and L. A. Smith, An investigation into the use of machine learning for determining oestrus in cows, Computers and Electronics in Agriculture, vol.15, issue.3, pp.195-213, 1996.
DOI : 10.1016/0168-1699(96)00016-6

D. Sagrado, J. , D. Águila, and I. M. , Olive Fly Infestation Prediction Using Machine Learning Techniques, Current Topics in Artificial Intelligence: 12th Conference of the Spanish Association for Artificial Intelligence, pp.229-238, 2007.
DOI : 10.1007/978-3-540-75271-4_24

P. Vossen, Monitoring and Control of Olive Fruit Fly (OLF) for Olive Production in California, 2014.

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, 2005.
DOI : 10.1145/507338.507355

J. R. Quinlan, Bagging, boosting and C4.5, 13th National Conference on Artificial Intelligence, pp.725-730, 1996.

J. C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, 1998.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2009.

L. Breiman, Random Forests, Machine Learning, pp.5-32, 2001.

Y. Freund and R. E. Schapire, Experiments with a new Boosting Algorithm, Proceedings of the Thirteenth International Conference on Machine Learning, pp.148-156, 1996.

F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms