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A STATISTICAL ANALYSIS OF PARTICLE
TRAJECTORIES IN LIVING CELLS

By VINCENT BRIANE*!, CHARLES KERVRANN* AND MYRIAM VIMOND?

INRIA, Centre de Rennes Bretagne Atlantique, Serpico Project-Team*
CREST (Ensai, Université Bretagne Loire)*

Recent advances in molecular biology and fluorescence microscopy
imaging have made possible the inference of the dynamics of single
molecules in living cells. Such inference allows to determine the orga-
nization and function of the cell. The trajectories of particles in the
cells, computed with tracking algorithms, can be modelled with dif-
fusion processes. Three types of diffusion are considered : (i) free dif-
fusion; (ii) subdiffusion or (iii) superdiffusion. The Mean Square Dis-
placement (MSD) is generally used to determine the different types
of dynamics of the particles in living cells (Qian, Sheetz and Elson,
1991). We propose here a non-parametric three-decision test as an
alternative to the MSD method. The rejection of the null hypothesis
— free diffusion — is accompanied by claims of the direction of the
alternative (subdiffusion or a superdiffusion). We study the asymp-
totic behaviour of the test statistic under the null hypothesis, and
under parametric alternatives. In addition, we adapt the procedure
of Benjamini and Hochberg (2000) to fit with the three-decision test
setting, in order to apply the test procedure to a collection of in-
dependent trajectories. The performance of our procedure is much
better than the MSD method as confirmed by Monte Carlo experi-
ments. The method is demonstrated on real data sets corresponding
to protein dynamics observed in fluorescence microscopy.

1. Introduction. A cell is composed of lots of structures in interac-
tion with each other. They continuously exchange biological material, such
as proteins, directly via the cytosol or via networks of polymerised fila-
ments namely the microtubules, actin filaments and intermediate filaments.
The dynamics of these proteins determine the organization and function
of the cell (Bressloff, 2014, chapter 9). The underlying traffic is known to
be oriented and it is established that local dynamics of proteins obey to
biophysical laws, including subdiffusion (diffusion in a closed domain or in
an open but crowded area), free diffusion (or Brownian motion) and su-
perdiffusion (active transport along the microtubules). Then, inference on
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2 V. BRIANE ET AL.

the modes of mobility of molecules is central in cell biology since it reflects
the interaction of the structures of the cell. For instance the postsynaptic
AMPA-type glutamate receptor (AMPAR) is a protein involved in the fast
excitatory synaptic transmission : it plays a crucial part in many aspects
of brain functions including learning, memory and cognition. The dynamics
of AMPARSs determine synaptic transmission : aberrant AMPAR  trafficking
is implicated in neurodegenerative process, see Henley, Barker and Glebov
(2011). Hoze et al. (2012) model their motion with diffusions confined in a
potential well. As an other example, Lagache, Dauty and Holcman (2009)
modelled the dynamics of a virus invading a cell to infer its mean arrival
time to the cell nucleus where it replicates. In their model, the dynamic of
the virus alternates between superdiffusion and Brownian motion.

The biophysical literature uses the word diffusion to describe the dy-
namics of intracellular particles. This word encompasses a great variety of
models. First, we have to distinguish diffusion at the macroscopic and mi-
croscopic level. The two are closely related in the sense that diffusion at the
macroscopic level gives the dynamic of population (or concentration) of par-
ticles undergoing microscopic diffusion. In the sequel, we are only interested
in microscopic diffusion i-e diffusion of individual trajectories. Secondly,
among the variety of mathematical models associated to microscopic diffu-
sion alone, we focus on models that reflects one of the three dynamics : free
diffusion, superdiffusion and subdiffusion. Usually, in the biophysical litera-
ture, the definition of these dynamics is related to the criterion of the mean
square displacement (MSD) (Qian, Sheetz and Elson, 1991). According to
the shape of the MSD curve, the literature distinguishes four main types of
diffusion (Saxton and Jacobson, 1997; Monnier et al., 2012): superdiffusion,
free diffusion, confined diffusion and anomalous diffusion. A particle evolving
freely inside the cytosol or along the plasma membrane is modelled by free
diffusion. Its motion is due to the constant collisions with smaller particles
animated by thermal fluctuations. Then, the particle does not travel along
any particular direction and can take a very long time to go to a precise
area in the cell. Active intracellular transport can overcome this difficulty so
that motion is faster and direct specific. The particles (called in this context
cargo) are carried by molecular motors along microtubular filament tracks.
Superdiffusions model the motion of molecular motors and their cargo. Sub-
diffusion, which includes confined diffusion and anomalous diffusion, are the
translations of several biological scenarios. Confined or restricted diffusion
(Metzler and Klafter, 2000; Hoze et al., 2012) is characteristic of trapped
particles : the particle encounters a binding site, then it pauses for a while
before dissociating and moving away. Anomalous diffusion includes parti-
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FI1G 1. Representative trajectories from (a) simulated data, (b) a Rabl1a protein sequence
in a single cell. (Courtesy of UMR 144 CNRS Institut Curie - PICT IBiSA). For the sim-
ulated data in Figure (a), the blue trajectory is Brownian, the red one is from a fractional
Brownian motion (parameter > 1/2), in cyan it is from a Ornstein-Uhlenbeck process
and in green from a fractional Brownian motion (parameter b < 1/2). The parameters of
the processes are given in Table (4).

cles which encounters dynamic or fixed obstacles (Saxton, 1994; Berry and
Chaté, 2014), or particles slowed by the contrary current due to the vis-
coelastic properties of the cytoplasm. In this paper, we will not distinguish
confined and anomalous diffusion and consider that both are subdiffusion.

In order to classify the observed trajectories into the three aforementioned
types of diffusion i-e subdiffusion, superdiffusion or Brownian motion (see
Figure 1), a popular statistic is the pathwise Mean Square Displacement
(MSD). The simplest rule to classify a trajectory with the MSD is based
on the least-squares estimate of the slope 3 of the log-log plot of the MSD
versus time (Feder et al., 1996). Didier and Zhang (2015) study the lim-
iting distribution of the pathwise MSD according to the true value of .
Nevertheless, MSD has several limitations :

e The MSD statistic is a summary statistic, and does not suffice to char-
acterize the dynamics of the trajectory. Gal, Lechtman-Goldstein and
Weihs (2013) present several other statistics which can be associated
to MSD for trajectory analysis. Lund et al. (2014) propose a decision
tree for selection motion model combining MSD, Bayesian informa-
tion criterion and the radius of gyration. Lysy et al. (2016) present a
likelihood-based inference as an alternative to MSD for the comparison
between two models of subdiffusions : fractional Brownian motion and
a generalized Langevin equation. They consider a Bayesian model to
estimate the parameter of the diffusion and they use the Bayes factor
to compare the models.
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e The variance increases with the time lag (see Figure 2) : only the first
few points of the MSD may be used to estimate the slope. Moreover
the MSD variance is also severely affected at short time lags by dy-
namic localization error and motion blur. Michalet (2010) details an
iterative method, known as the Optimal Least Square Fit (OLSF) for
determining the optimal number of points to obtain the best fit to
MSD in the presence of localization uncertainty.

e In order to take account of the variance of the MSD estimate, several
authors use a set of independent trajectories rather than single trajec-
tories. These trajectories may have different lengths but are assumed
to have the same kind of motion. For instance Pisarev et al. (2015) con-
sider weighted-least-square estimate for 8 by estimating the variance
of pathwise MSD. Their motion model selection is then based on the
modified Akaike’s information criterion. Monnier et al. (2012) propose
a Bayesian approach to compute relative probabilities of an arbitrary
set of motion models (free, confined, anomalous or directed diffusion).
In a general situation, this averaging process can lead to oversimpli-
fication and misleading conclusions about the biological process (Gal,
Lechtman-Goldstein and Weihs, 2013).

In this paper, we propose a measure that circumvents some limitations of the
MSD and which is efficient for classifying single trajectories. In our experi-
ments, the raw data consist in a time series of images obtained by time-lapse
fluorescent microscopy. They depict small spots or particles trafficking at the
scale of a cell over a fixed time period. Single- and multiple-particle tracking
procedures allow us to extract individual molecule and protein trajectories,
see Figure 1 (b), which are the data on which we infer. These tracking
procedures involve mathematical models and scientific computing to track
the single-particle trajectories, see Chenouard et al. (2014); Maroulas et al.
(2015); Brunel et al. (2015) and references therein. Our procedure is a three-
decision test (Shaffer, 1980). We previously proposed a test with promising
results to address this classification problem (Briane, Vimond and Kervrann,
2016). The null-hypothesis is that the observed trajectory is generated from
a Brownian motion and the two distinct alternatives are the subdiffusion
and superdiffusion. The test statistic 7T}, is the standardized largest distance
covered by the particle from its starting point. We interpret this measure
as follows : i/ if the value T, is low, it means that the process stayed close
to its initial position and the particle may be trapped in a small area or
hindered by obstacles (subdiffusion); ii/ if the value T;, is high, the particle
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went far to its initial position and the particle may be driven by a motor
in certain direction (superdiffusion). We propose a theoretical study of the
distribution of the test statistic under the null hypothesis, and we assess the
power of the test under parametric models illustrating superdiffusion and
subdiffusion. At the end, we derive a multiple test procedure in order to ap-
ply simultaneously the test on a collection of independent trajectories which
are tracked inside the same living cell. This procedure is an adaptation of
the procedure of Benjamini and Hochberg (2000).

The present paper is organized as follows. In Section 2, we describe the
inference model and provide some examples of subdiffusion and superdiffu-
sion. Our testing procedure is defined in Section 3. In Section 4, we derive
a multiple testing procedure for a collection of trajectories. We carry out a
simulation study and illustrate the method on real data in Section 5. We
focus on the analysis of the Rabl1la GTPase protein. This protein is involved
in the trafficking of molecules from the endosomes located inside the cell to
the cell plasma membrane. The data are TIRF microscopy images depict-
ing the last steps of exocytosis events observed in the region very close the
plasma membrane (Schafer et al., 2014). The proofs are postponed to the
appendix.

2. Diffusion models for particle trajectories. We observe the suc-
cessive positions of a single particle in a two-dimensional space at times
to,t1,...,t,. We suppose that the lag time between two consecutive obser-
vations is a constant A. The observed trajectory of the particle is,

Xn = (XtO7Xt1” . 'ath)a

where X;, = (X}, X?) € R? is the position of the particle at time t; =
to +iA, i = 0,...,n. This discrete trajectory is generated by a stochastic
process (X¢)¢,<t<t, with continuous path, solution of the stochastic differ-
ential equation (SDE) :

(2.1) dX} = ps(X))dt + odBY, i=1,2.

where B?’i are unobserved independent 2D- fractional Brownian motions of
unknown Hurst parameter h, o > 0 is the unknown diffusion coefficient and
(p1(x1), p2(w2)) : R? = R? is the unknown drift term.

ASSUMPTION 1.  We assume that p; fulfils the linear growth hypothesis :

(2.2) IK >0, VzeR, |w(z)] <K+ |z)),
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and the Lipschitz condition :

(2.3) AM >0, VY(z,y) €R? |pi(z) — pily)] < Mz —y|.

We denote by L the set of functions verifying Assumption 1. Assumption
1 is sufficient to ensure that SDE (2.1) admits a strong solution (see Nualart
and Ouknine (2002) for the case 0 < h < 1/2, and Mishura (2008, Chapter
3) for the case 1/2 < h < 1). For a given fractional Brownian motion, we
say that (X;) is a strong solution of the SDE (2.1) if (X}) verifies (2.1), has
continuous paths and that, at time ¢, X; depends only on X;, and on the
trajectory of the fractional Brownian motion up to time ¢. In the following,
Py .o denotes the measure induced by the stochastic process (X;) solution
of (2.1). This measure comprises all the finite dimensional distributions of
the process that is the distribution of the vectors (Xy,,...,Xt,), n € Nx
and t; <,...,<t,. Wealsonote P = {F ,,:0<bh<1pucLl,o>0} the
set of solutions of the SDE (2.1).

REMARK 2.1. In the following, we adopt the large-sample scheme to
derive asymptotic properties of our procedure, that is the inter-observation
time A remains fixed and the number of observations n tends to infinity.
In the experimental context of microscopic sequences, A is the resolution
of the camera while n is the number of frames during which we track the
particle. Obviously the resolution of the camera does mot change during
the experiment. In an ideal situation, we track the particle during an in-
finite time of observation therefore the number of frames n tends to infinity.
Then the large-sample scheme is the most realistic scheme in our context.
Other schemes exist (see (Fuchs, 2013, Section 6.1.3)) as the high-frequency
scheme for which A tends to zero while the duration of observation is fixed.
(Fuchs, 2013, Section 6.1.3) emphasizes that the large-sample scheme is the
most realistic in real applications while the high-frequency scheme is conve-
nient from a theoretical point of view.

Heuristically, a SDE models the motion of a particle in a fluid submitted
to a deterministic force due to the fluid and a random force due to random
collisions with other particles. That is why we model efficiently the motion of
intra-cellular particles with these processes. In Equation (2.1), the velocity
of the fluid is given by the drift p while the term JdB? expresses the random
component of the motion due to random collisions.
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2.1. Mean Square Displacement and Modes of Motion. The mean square
displacement is a second order moment defined as :

(2.4) MSD(t) = Eg e (10 = Xiol13)

where Eyp ,, ; is the expectation associated to the measure P ,, ;. The empir-

ical mean square displacement of the trajectory X,, at lag j is given by :
n—j

(2.5) MSD(jA) = | X:
k=0

1
T o e — X
According to the shape of the MSD curve, it is common to classify the
motions into four classes (rather than into the three groups we presented un-
til now) : Brownian motion (B), anomalous diffusion (A), confined diffusion
(C) and directed diffusion (D) (Monnier et al. (2012) Saxton and Jacobson
1997) Pisarev et al. (2015)),

(
(2.
(

2.6) MSDg(t) = 20%t,
2.7) MSDj (t) = 20217,
2
(2.8) MSDe(t) = £ (1 — be“7" /1),
(2.9) MSDp(t) = |Jv]|* £ + 20,

where 3, a,b, ¢, . are positive constants, and v € R2.

In the following subsections, we present diffusion models defined by a SDE
(2.1) which have a MSD of the type (A), (B), (C) or (D). We also associate
each situation (A), (B), (C) and (D) to one of the three group of diffusions
we defined in first place.

Figure 2 illustrates one of the limitation of the MSD : the variance of
the estimator (2.5) increases with the lag j. From the MSD model (2.7),
Feder et al. (1996) states that the trajectory is subdiffusive if 8 < 0.9,
superdiffusive if 8 > 1.1 and Brownian if 0.9 < 8 < 1.1. If 8 < 0.1 it states
that the particle does not move. Figure 2 suggests that the classification of
Feder et al. (1996) overdetects subdiffusion and superdiffusion while it is
Brownian motion.

2.2. Free diffusion. Free diffusion or Brownian motion is the most pop-
ular process for describing particle motion suspended in a liquid (Einstein,
1956). It suits particularly well for describing intracellular particle motion as
the interior of the cell is mainly made of a fluid called the cytosol. Brownian
motion allows dissolved macromolecules to be passively transported without
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Fic 2. A classification rule for motion modes from MSD. The dashdotted lines are the
bound defined by Feder et al. (1996), t — t°, 8 = 0.9 and 1.1. The dashed lines are the
pointwise high probability interval of 95% associated to the empirical MSD curve for a
standard Brownian motion trajectory of length n = 30. The bounds of the interval are the
2.5% and 97.5% empirical quantile of (2.5) and are computed by Monte Carlo simulation
from 10001 Brownian trajectories of size n = 30.

any input of energy. In the SDE (2.1), it matches with the situation where
the drift p; = 0 and h = 1/2. In biophysics, it is the process of reference. As
a consequence they define the concepts of subdiffusion and superdiffusion
from the MSD of Brownian motion (2.6).

2.3. Subddiffusion. Anomalous and confined diffusion respectively de-
fined by their MSD (2.7) and (2.8) are both subdiffusions since their MSD
is sublinear. There are several ways to model confined diffusion.

On the first hand, we can consider that the domain has non permeable
boundaries. Then the motion can be modelled by the SDE (2.1) adding
boundary conditions. Equation (2.8) is based on the first two terms of the
exact series solution of the MSD of a Brownian particle trapped in a square
corral or circular corral defined by the actin cytoskeleton (see Kusumi, Sako
and Yamamoto, 1993; Saxton, 1993). The parameter r. quantifies the area
of confinement of the trap while its geometry is described by parameters
a, b and c. The diffusion process in this restricted area is called confined
diffusion.

On the other hand, we can state that the particle is attracted by an
external force modelled by a potential well. We can then use the SDE (2.1)
with a specific form for the drift : p;(z) = —VU;(z)/~; where —VU; is the
external force of the fluid and ~; is the frictional coefficient. For instance,
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we may consider the Ornstein-Uhlenbeck process :
(2.10) AXi = —\(X] — 0;)dt + cdB*, i=1,2

where \; > 0. Here the particle is assumed to be trapped in a single domain,
the potential U is uni-modal and is approximated by a polynomial of order 2
: Ui(x) = (1/2)k;(z;—0;)?. The parameter k; = )\;7y; measures the strength of
attraction of the potential (related to the potential depth) while 8 = (61, 62)
is the equilibrium position of the particle. The Ornstein-Uhlenbeck process
is a confined diffusion according to the MSD criterion since its MSD is
sublinear,
~ 20%(1—e M)

(2.11) MSD(t) = == < 20°%,

here it is written in the case A\; = A for simplicity.

Anomalous diffusion can occur for two main reasons. First the particle
can bind to an immobile trap that can generate long jump times (Saxton,
1996). In this situation, its motion can be modelled by a continuous time
random walk (Metzler and Klafter, 2000). We will not consider this model
here as it is not solution of the SDE (2.1). Secondly, the particle can be
hindered by mobile or immobile obstacles as the interior environment of cells
are crowded with solutes and macromolecules (Bressloff and Newby, 2013).
Then, a popular model is the fractional Brownian motion (Jeon et al., 2011).
It corresponds to the case 0 < h < 1/2 and p; =0 in (2.1),

(2.12) dX} = odBY,  i=1,2.
Its MSD is given by (2.7) with § =2h < 1.

2.4. Superdiffusion. At the macroscopic level, the main type of active in-
tracellular transport involves molecular motors which carry particles (cargo)
along microtubular filament tracks. The molecular motors and their cargo
undergo superdiffusion on a network of microtubules in order to reach a
specific area quickly. The molecular motor moves step by step along the
microtubules thanks to a mechanicochemical energy transduction process.
A single step of the molecular motor is modelled by the so-called Brown-
ian ratchet (Reimann, 2002). When we observe the motion of the molecular
motor along a filament on longer time-scales (several steps), its dynamic
can be approximated by a Brownian motion with constant drift (also called
directed Brownian) (see Peskin and Oster, 1995; Elston, 2000).



10 V. BRIANE ET AL.

The Brownian motion with drift is solution of the SDE :

1/2,i
)

(2.13) dX} = v;dt + 0dB, i=1,2,

where v = (v1,v2) € R? is the constant drift parameter modelling the ve-
locity of the molecular motor. The MSD of the directed Brownian motion is
given by (2.9). It is a superdiffusion according to the criterion of MSD.

Superdiffusion can also be modelled by the fractional Brownian motion
with Hurst parameter 1/2 < h < 1 since its MSD, as we have already said,
is given by (2.7) with 5 = 2 > 1. However, we note that in the biophysic
literature the use of the fractional Brownian motion is mainly related to
subdiffusion.

3. A statistical test procedure for a single trajectory. We sup-
pose that the trajectory X,, = (Xy,...,Xs,) is generated from some un-
known diffusion process (X;) solution of the SDE (2.1). Our procedure allows
to test from which type of diffusion the observed trajectory is generated.

We derive two hypothesis test procedures : one for testing Hy ”(X;) is
a free diffusion” versus H; ”(X;) is a subdiffusion”, the second for testing
Hp 7 (Xy) is a free diffusion” versus Hs ”(X}) is a superdiffusion”. Then we
aggregate the two procedures to build a three-decision procedure.

3.1. The test statistic. Let us consider the standardized maximal dis-
tance T;, of the process from its starting point :
D,
(tn - t0)572z

where D,, is the maximal distance of the process from its starting point,

(3.1) T, =

(3.2) D, = .ErllaX Hth - XtoH2

[RRES}

and &, is a consistent estimator of o. The choice of ¢ is discussed in Sec-
tion 3.4. If T, is low, it means the process stays close to its initial position
during the period [to, t,] : it is likely that it is a subdiffusion. On contrary,
if T}, is large, it means the process goes away from its starting point as a
superdiffusion does with high probability. This new measure introduces an
order in the diffusion processes solution of the SDE (2.1). Then, it allows
to classify them into the different classes of diffusion i-e free diffusion, su-
perdiffusion and subdiffusion. We want to build a test whose null hypothesis
is that the trajectory comes from a Brownian motion, the gold standard
process in biophysics. As a consequence T, must be a pivotal statistic under
the hypothesis Hy that is the trajectory is Brownian.
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LEMMA 3.1.  Let 6, be a consistent estimator of o such that the distri-
bution of 6y,/0 does not depend on o. If (X;) is a Brownian Motion, the
distribution of T,, does not depend on o.

Let g, () the quantile of T}, of order a € (0,1) when (X;) is a Brownian
motion. From Lemma 3.1, ¢,(«) does not depend on o.

3.2. Two hypothesis test procedures derived from the test statistic. First
we define ¢, the hypotheses test associated to Hy versus H; at level a €
(0,1). The procedure ¢;  is defined through its critical region,

(3.3) Ria= {Tn < qn(a)},
as the following,

1 ifX, € Ria
0 otherwise.

$1,0(Xp) = {

Then T, has probability « to lie in the critical region (3.3). According to
Lemma 3.1, the level of the test ¢, is «a,

(3.4) sup P1/2,0,a (Th < qu(@)) = a.
>0
In a similar way, we can perform the test ¢2 o by replacing subdiffusion by
superdiffusion in the alternative hypothesis. The associated critical region
is :

(3.5) RZ,a - {Tn > Qn(l - 0‘)} .

3.3. A three-decision test procedure. From the two tests ¢y o2 and ¢g o /2,
we define a new procedure ¢ as follows,

we decide H; if X, € RLQ/Q,
(3.6) we decide Hj if X, € Ry o /2,
we do not reject Hy otherwise.

This procedure is well defined since the intersection of the critical region
Ri,a and Ro o is empty. This procedure is a three-decision test procedure
and admits three kinds of errors, see Table 1.

The first kind of errors is to reject the null hypothesis Hy while Hy is
actually true. The probability that this error occurs is the level of the test
which is defined as,

(3.7) 81;18 Ei/20,0 (91,0 + #2,0) = .
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TABLE 1

The three kinds of error in a three-decision test procedure.

Decision
Do not . .
Truth Reject Hy Decide H; Decide Ho
Hy True No error Type I Type I
Hy True Type 11 No error Type III
Hs True Type 11 Type III No error

We only control the occurrence of this first kind of error. Then we draw
attention that acceptance of Hy ”(X}) is a free diffusion” does not necessarily
demonstrate that Hy is true. It only means that data does not show any
evidence against the null hypothesis. At the end, we reject this assumption
in direction to one of the alternatives at level a/2.

The second type of errors occurs when we do not reject the null hypothesis
while one of the alternatives is true.

The last type of errors is to reject the null hypothesis in favour to a wrong
alternative. In the literature of three-decision test such an error is called a
Type III error, see for example Rasch (2012) and references therein.

3.4. Choosing the estimator of o. Ideally, we would like to find an esti-
mator of o which is consistent according to the large-sample scheme under
the hypotheses Hy, Hy and Hs, and satisfies the assumption that the dis-
tribution of 6, /0 is free of o under Hy. However, the large-sample scheme
is not favourable to get an estimator with such properties. For instance,
Florens-Zmirou (1989) shows that the naive maximum likelihood estimator
for the drift parameter has an asymptotic bias of the order of lag time A.
Then, the high-frequency scheme and the rapidly increasing design turns out
to be more convenient to provide consistent estimators. In fact, in the limit,
these schemes correspond to the situation in which we have a continuous
observation of the process on the time interval of observation. Jiang and
Knight (1997) propose non parametric estimators of both the drift and the
diffusion coefficient. The consistency of these estimators is proven under the
high-frequency scheme only. Therefore, in this section, we discuss about the
estimation of the diffusion coefficient under the large-sample asymptotic.

The first proposition to estimate ¢ may be :

. RN
(3.8) Uin = m Z Hth - th—1 H%
j=1

Even if the estimator (3.8) is strongly consistent under the high-frequency
scheme for every process (X;) solution of (2.1) (Basawa and Prakasa Rao,
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1980, Lemma 4.2, p 212), Proposition 1 tells us that it is not the case under
the large-sample scheme.

PROPOSITION 1.

e Under Hy, 61, is strongly consistent and the distribution of 61, /0 is
free of o.

e If (X;) is an Ornstein-Uhlenbeck process (2.10), 63, /0® converges in
probability to (1 — e *2)/(\A).

e If (Xy) is a Brownian motion with drift (2.13), 6%7,1/02 converges al-
most surely to Alv||3/(202) + 1.

o If (X}) is a fractional Brownian motion (2.12), 6%771/02 converges al-
most surely to A29~1,

A proof of Proposition 1 is given in the supplementary material (Briane,
Kervrann and Vimond, 2017, Section 3.1). Proposition 1 states that &,
is adequate to our procedure under the null hypothesis. However &1, is
asymptotically biased under some alternatives. Notice that if (X;) is an
Ornstein-Uhlenbeck process (2.10), then 67, underestimates 2 in average
since (1 — e ®)/x < 1 for £ > 0. Then T,, might be overvalued with this
estimator, increasing Type II or type III error rate in our procedure. If
(X;) is a Brownian motion with drift (2.13), 7 overestimates o2 in average.
Then T, might be overvalued with this estimator, increasing Type II or type
III error rate. Similarly, if (X;) is a fractional Brownian motion (2.12), 57
underestimates o2 if h < 1/2, and overestimates o if h < 1/2.

The second suggestion to estimate ¢ may be based on the second order

differences rather than the first order differences,

n—1

1 _
(39) ,n = 7 Z ti+1 j) o (th o thfl)Hg'
=1

As &%’n, 6%’71 fulfils the assumption of Lemma 3.1 under Hy. This estima-
tor has the advantage of decreasing the bias under some alternatives. For
instance it removes the bias in the case of the Brownian motion with drift.

3.5. Approzimation of the distribution of the statistic under the null hy-
pothesis and asymptotic behaviour of our procedure. Theorem 3.1 gives the
asymptotic behaviour of our procedure under the null hypothesis.

THEOREM 3.1.  Let (X;) be a Brownian Motion on R?. Let &, be a con-
sistent estimator of the diffusion parameter o of (Xy). The test statistic T),
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converges in distribution to So = supg<s< ||Wslly as n — oo. Here (Wy) is
a standard 2D Brownian motion that is the Brownian motion of variance Io
and initialization Wy = (0,0) "

A proof of Proposition 3.1 is given in the supplementary material (Briane,
Kervrann and Vimond, 2017, Section 3). The limit distribution of the test
statistic under Hp admits an analytical form (see Borodin and Salminen,
1996, Formulae.1.1.4, p. 280):

where x > 0, J,, the Bessel function of order v and 0 < j,1 < j,2 < ... the
positive zeros of J,. Replacing the quantiles ¢, («) by the quantiles of Sy in
our test procedure provides us a test of asymptotic level a.

Furthermore, Proposition 2 gives the asymptotic behaviour of the test
statistic under parametric alternatives when the estimator &1, is consid-
ered (see the supplementary material (Briane, Kervrann and Vimond, 2017,
Section 3.2) for a proof). More generally, as long as the estimator &, of the
diffusion coefficient is such that 6, /0 converges in probability to a positive
constant whatever the dynamic of (X3), then Proposition 2 holds.

PROPOSITION 2.  Assume that we consider the estimator (3.8) in our
procedure (3.1).

e If (X}) is an Ornstein-Uhlenbeck process (2.10), then T,, converges in
probability to 0.

o If(Xy) is a fractional Brownian motion (2.12) with 0 < b < 1/2, then
T, converges in probability to 0.

o If (Xy) is a fractional Brownian motion (2.12) with 1/2 < b < 1, then
T, converges in probability to 4o0.

e If (X;) is a Brownian motion with drift (2.13), then T,, converges in
probability to +oo.

Note that Theorem 3.1 and Proposition 2 allow us to control the error
rates of type II and type III under parametric alternatives : the associated
error rates converges to 0 with n.

However, as in practice n may be small, the asymptotic approximation
of the quantiles of T;,, may not be accurate. Then the level of the test is
no longer a. Since we are able to draw a sample from the distribution of
T, under Hy (see Algorithm 1), we propose a Monte Carlo estimate of the
quantile g,(z), 0 < z < 1. This estimate is defined as the [zN]*"" order
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statistic, qu) (x), of the sample (Ty(ll), - ,T,,(LN)). Table 2 shows that there

is a significant difference between asymptotic and non asymptotic quantiles.
As expected, as n — 00, g, () converges to g(a).

Input: n, o, L
// the length n of the trajectory
// the probability a € (0,1)
// the number N of Monte Carlo experiments
Result: qﬁlN)(a).
for i=1 to N do
// Simulation of a Brownian trajectory of size n, of variance o =1
and with resolution time A =1.
initialization Y = (0,0)7;
for j=1 to n do
Draw € ~ N (0, I2);
’Yj(” — 1/].(1)1 + €
end
// Computation of the test statistic

Compute the ratio Tﬁi) = Dﬁli)/&y(f) from (Yo(i), cee Y,Si));

end

Algorithm 1: Simulation of a N-sample (T,gl), . ,T,(LN)) of the distribu-
tion of the statistic T,, under Hy.

In dealing with a test, we can also be interested in computing the p-value.
The p-value of the test Hy vs H; (subdiffusion as the alternative) is defined
as :

(3.10) pin = Fu(Th),

where F,, denotes the cumulative distribution function (cdf) of T,, under
Hy. The p-value of the test Hy vs Hs (superdiffusion as the alternative) is
defined as :

(3.11) pon =1—F(T)).

Testing the hypothesis Hy vs the hypotheses H; or Hs is more tricky as we
use a two-sided test with a non-symmetric distribution. In this case we can
define the p-value as :

(3.12) Pn = 2min{p1n,pan} -

Doubling the lowest one-tailed p-value can be seen as a correction for car-
rying out two one-tailed tests.
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TABLE 2
Estimation of the quantiles of order a/2 and 1 — a/2 (o = 5%) for different trajectory
lengths n, using algorithm 1 with N = 1000001.

Estimated quantiles Trajectory size
quantile order 10 30 100  asymp
2.5% 0.725 0.754 0.785 0.834
97.5% 2.626 2.794 2.873  2.940

We estimate F),, with the standard empirical distribution function estimated
by Monte Carlo simulations using Algorithm 1 :

(3.13) F, -1 Z 7O < z)

Then we estimate the p-value (3.12) substituting £}, to Fy,.

4. Multiple test procedure for a collection of trajectories. Track-
ers compute a collection of particle trajectories from a sequence of images.
Then, it is desirable to decide the modes of mobility for a collection of par-
ticle trajectories. From now, we consider a collection &, of m trajectories
which are simultaneously observed. We denote by Xgi) the observations as-
sociated to the k™ particle :

X = (X§f),...,X§fZ), k=1,....m
Xm:{ X®, k=1,.. }

In this section, we denote by P the probability distribution of the m-uplet
stochastic processes ((Xt(k)), k=1... m) and by E its associated expecta-

tion. We assume that the observed trajectories are independent, that means
P belongs to the tensorial product of probabilities P, (defined in Section 2)
P € P®™, For all trajectories k = 1...m, we derive our trichotomy hypoth-
esis test procedure : H(gk) K (Xt(k)) is a free diffusion” versus ka) K (Xt(k))
is a subdiffusion” or HQ(k) K (Xt(k)) is a superdiffusion”. We are faced with
the problem of simultaneous tests when the rejections of null hypotheses
H((]k) are accompanied by claims of the direction of the alternative (H fk) or

Hék)) In this setup, multiple test procedures are preferable than single test
procedures. Indeed, applying the procedure at level « for each trajectory
produces in average a number of ma type I errors. A multiple testing pro-
cedure aims to control the number of false discoveries. We refer the reader
to Shaffer (1995); Roquain (2011); Grandhi (2015) for a review.
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TABLE 3
Outcomes in testing m null hypotheses against two-alternatives. For i = 1,2, R; is the
cardinal of Ri(Xm). The variables (Si)i=1...a, (T3)i=1,2, U, (Vi)i=1,2 are not observed and
depend on X, and P.

True situation Decision
Accept Hy Accept Hi Accept Hy | Total
HQ U Vl V2 mo (P)
H, T Si S3 my (P)
H2 T2 S4 SQ mo ]P))
Total m — R1 — RQ R1 Rg m

A multiple testing procedure of m null hypotheses against two alternative
hypotheses is a rule Rq(X,,) X Ra2(X,,), where Ry (X)) and Ro(AX;,) are
disjoint subsets of {Hél), . ..Hém)}. For i = 1,2, R;(X,,) is the set of the
rejected hypotheses Ho(k) to the benefit of the alternative H Z-(k).

We may commit three kinds of errors in such a multiple testing procedure.
Let us introduce the following notations before listing these errors. For a
given P € P®" we denote by Z(P) the subset of indexes {1,...m} for

which the hypothesis (H(gk)) is actually true and by mg(P) the unknown
cardinal of the set Z(IP). We denote by R = R; + R3 the observed number of
null hypotheses which are rejected by the multiple testing procedure. Table
3 summaries the number of errors which may occur following a multiple
testing procedure.

e We make a type I error on Hék) when we reject Hék) while it is a true

null hypothesis. In this case, k belongs to the set Z(P) N (R1(AXy,) U
R2(X)). The number of errors of first kind is V = Vj + V5.

e Type II error occurs when we do not reject a null hypothesis Hy
while Hy , is false (k ¢ Z(P)). The number of errors of second kind is
T=T +1T5.

e The type III errors are directional errors : the index k ¢ Z(P) is cor-
rectly rejected (k € Ri(Xp) UR2(AXy)), but for the wrong alternative.
We mix up the alternatives deciding one while it is the other. The
number of errors of third kind is S = S5 + S4.

To measure the type I error rate, it is common to consider the k-family-
wise error rate (k-FWER) or the false discovery rate (FDR), see Roquain
(2011) and references therein. In our settings, controlling the type I error
rate is a first step, but it would be necessary to control type III errors as
well. In the literature, the sum of the number of errors of first and third
kind is controlled using the mixed-directional-family-wise error rate (md-
FWER) or the mixed-directional-false discovery rate (mdFDR), see Grandhi
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(2015). To our knowledge, the mdFWER and mdFDR are only controlled
for the problem of testing null hypotheses against two-sided alternatives for
finite-dimensional parameters, see for example Guo and Romano (2015) and
references therein.

Biologists are interested in the proportions of each dynamic (subdiffusion,
superdiffusion and Brownian motion) and their geographic location in the
cell. In this context, controlling the FWER, that is the probability to make
a single false discovery, is not relevant. That is why we focus on a proce-
dure which enables to control the FDR. (Guo and Romano, 2015, Section
5) also present several multiple test procedures associated to three-decision
problems which aim to control the FDR. Their approach is different since
the problem is rewritten as a problem which carries out 3m null hypothe-
ses. Their proposed procedures control strongly the FDR only on 2m null
hypotheses among the 3m under the dependence or independence of the
test statistics. In this section, we propose to adapt the multiple testing pro-
cedures of Benjamini and Hochberg (1995) and Benjamini and Hochberg
(2000) controlling the FDR that is the average proportion of false discover-
ies among the discoveries. We stress that our model is non-parametric. Then
we will consider the control of the mdFDR or mdFWER for a next issue.

Let p(k),pgk), and pgk) be respectively the p-value (3.12), (3.10) and (3.11)
associated to the k™ trajectory, & = 1...m. Let pt™) < p@m) < <
p™™) be the ordered p-values, and H(gl:m), . ..Hém:m) the associated null
hypotheses.

The adaptation of the Benjamini-Hochberg (BH) procedure is described
in Procedure 1.

PROCEDURE 1 (Adaptation of the Benjamini-Hochberg (BH) procedure).

1. Use the Benjamini-Hochberg procedure on the p-values (p%™))p—1. m

Let k* be the largest k for which pm) < %a.
Ra(Xn) is the set of all hypotheses H&™) fork =1,... k*.

2. Let R1 (X)) be the subset Ro(Xy,) such that p(lk) < pgk).
3. Let Roo(Xm) be the subset Ro(Xry,) such that pgk) > pék).

The set Rq(X,) is the set of all rejected null hypotheses for our tri-
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chotomy test. According to Finner and Roters (2001), we have,

v
Pc P FDR(Ra(Xn),P)=FE | ——
VP € PE™, R(Ra(Xn), P) (max(R,l))

mo(IP) N

Then the FDR of Procedure 1 is controlled by «. Moreover the p-values

pgk) and pgk) give the information to which side of the distribution F3,, the

associated test statistic TT(L],:) is. The case of equality (pgk) = pgk) = 1/2)
never occurs since such null hypothesis will not be rejected at the step 1 of
the Procedure 1.

Actually, we may also use the adaptive BH procedure of Benjamini and
Hochberg (2000) as the first step of Procedure 1. Then the Procedure 1 will
be referred to as the adaptive (respectively standard) Procedure 1 when we
use the adaptive (respectively standard) BH procedure as the first step. The
adaptive BH procedure is more powerful than the standard BH procedure. It
uses an estimation of the number of true null hypotheses mg(P) to increase
the power of the BH procedure. Benjamini and Hochberg (2000) simply
define the adaptive BH procedure by replacing m by an estimator g of
my in the BH procedure. The associated FDR is (mg/mg)a and is less than
a if mg < mg almost surely. The estimator mg is based on the plot of the
ordered p-values p“™ versus i. The ordered p-values corresponding to the
true null hypothesis are on the right side of the plot. There exists an index
i such that the points (7,p*™)), (i + 1, pt+Em) . (m, p™™) can be fit
by a straight line with slope xk = 1/(mgy + 1). Then they use a method
to determine ¢ and estimate mg from the estimate of k. The procedure to
estimate mg presented in Benjamini and Hochberg (2000) is made for g
to be upward biased. This bias favours the control of the FDR at level a.
Due to the fact that mg does not fulfil the condition mg < mg almost surely,
we can not say that the adaptive BH procedure controls the FDR at level
a theoretically. However simulations from Benjamini and Hochberg (2000)
suggest that the adaptive BH procedure controls the FDR at level .

5. Simulation study and real data applications. We assess the
power of our single test procedure (on a single trajectory) and our multiple
test procedure (on a collection of trajectories) by Monte Carlo simulations.
We consider parametric alternatives : the Ornstein-Uhlenbeck (2.10) and the
fractional Brownian motion 0 < h < 1/2 with Hurst index for subdiffusion
processes (Hj); the Brownian motion with drift (2.13) and the fractional
Brownian motion with Hurst index 1/2 < < 1 for superdiffusion processes
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(Hz). At the end, we apply our procedure on real data comparing our re-
sults with those obtained thanks to a method based on the mean square
displacement (MSD).

5.1. Power of the test procedure for a single trajectory. In Section 3, we
study the asymptotic distribution of the test statistic under the null hy-
pothesis and parametric alternative hypotheses. More precisely Proposition
2 states that the power of the test under parametric alternatives converges
to 1 with n. Figure 3 shows the Monte Carlo estimates of the power un-
der the parametric alternatives aforementioned in Proposition 2. For a fixed
step of time A and a fixed diffusion coefficient o, we vary the values of the
other parameters and the length n of the trajectories. For each parametric
alternatives of Proposition 2, we can use exact simulation schemes.

If (X¢) is an Ornstein-Uhlenbeck process (2.10) which is entered in its
stationary regime, then the distribution of the test statistic does not depend
on 6 (see the supplementary material (Briane, Kervrann and Vimond, 2017,
Section 3.3)). Figure 3(b) shows the plot of the power regarding the values
of A\ which models the strength of the restoring force toward the equilibrium
position 6. Stronger is the force, more powerful is the test.

Furthermore if (X;) is a Brownian motion with drift with parameters
(v,0) such that ||v]| VA > o, then the particle goes toward the direction of
v while the Brownian random part of the SDE (2.13) does not affect much its
trajectory (see the supplementary material (Briane, Kervrann and Vimond,
2017, Section 3.3)). The bigger is the norm of the drift parameter v, more
powerful is the test, see Figure 3(a).

Finally if (X;) is a fractional Brownian motion, then the distribution
of T,, depends only on the Hurst index b (see the supplementary material
(Briane, Kervrann and Vimond, 2017, Section 3.3)). Then the test procedure
is equivalent to test the null hypothesis ”h = 1/2” versus "h # 1/27, see
Figure 3(c).

5.2. The Average Power and the mdFDR of the multiple test procedure
for a collection of trajectories. The simulation settings are described as
follows. According to experience, we choose the number of trajectories to
be m = 100 or m = 200. All trajectories are assumed to have the same
size n = 30, since this size is reasonable regarding real data. The diffusion
coefficient o and the lag-time A are set to 1. The collection of trajectories
Xy, is composed of :

e my < m Brownian trajectories (Hy);
e (m — mg)/2 subdiffusive trajectories (Hi), half from an Ornstein-
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Fic 3. Monte Carlo estimate of the power of the test at level o = 0.05 according to the
trajectory length n and the parameter associated to the following parametric alternatives
: (a) Brownian motion with drift (parameter v = (vi,v2) such that vi = v2); (b) the
Ornstein-Uhlenbeck process (parameter \) and (c) fractional Brownian motion (parameter
h). We use 10001 Monte Carlo replications for computing each point of the power curves.

Uhlenbeck process with parameter A > 0, half from a fractional Brow-
nian motion with Hurst index 0 < h < 1/2;

e (m — myp)/2 superdiffusive trajectories (Hj), half from a Brownian
motion with drift v € R?, half from a fractional Brownian motion with
Hurst index 1/2 < h < 1.

The parameters to simulate these trajectories are given in Table 4. We take
the parameters corresponding to a power of the single test procedure of
80%. Such parameters are used to produce Figure 1 (a). This choice seems
coherent in regards to trajectories from real data, see Figure 1 (b). For
a given m, the proportion of true null hypotheses Hy varies : mg/m €
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TABLE 4
Parameters used for simulating the alternative hypotheses in the simulation for multiple
testing. These choices of parameters correspond to a power of 80% on the power curve of
the single test procedure. For simplicity we took o =1 for all processes (including
Brownian motion). We choose A = 1.

Hypothesis  Process Parameter Value

H, Ornstein-Uhlenbeck A 0.53

H; Fractional Brownian h 0.13

H, Brownian motion with drift [Jvl| 0.66

H> Fractional Brownian §} 0.85
TABLE 5

Monte Carlo estimate of the FDR and mdFDR for both standard and adaptive Procedure
1 at level o = 0.05. The number of replications is 10001. The error rate estimations are
ezxpressed in percentages.

Standard Adaptive
m mo/m FDR mdFDR FDR mdFDR
100 0 0 0 0 0.2
0.2 1 1 3.7 3.7
0.4 2.1 2.1 4.2 4.2
0.6 3.2 3.2 4.7 4.7
0.8 4.1 4.1 4.8 4.8
200 0 0 0 0 0.4
0.2 1 1 3.4 3.4
0.4 2.1 2.1 4 4
0.6 3.2 3.2 4.6 4.6
0.8 4 4 4.7 4.7

{0,0.2,0.4,0.6,0.8}.

The mdFDR is a rate which controls the error of type I and type III.
It is defined as E((V 4+ S)/max(R, 1)) (see Table 3). Table 5 shows that
the Procedure 1 also controls the mdFDR. The mdFDR and FDR, appear
to be very close meaning that the number of type III errors is extremely
low. Furthermore, the adaptive Procedure 1 (where mg is estimated) is less
conservative than the standard Procedure 1. As expected, the FDR and
mdFDR increase as the proportion of true null hypotheses increases.

To assess the performance of our multiple test procedure, we use the
average power (Grandhi, 2015) :

(5.1) E <S) L i=1,2
mg

where m; is the number of true alternatives H; and S; (i = 1,2) is defined
in Table 3. In our simulation scheme, we set m; = (m —mg)/2. The average
power is the expected proportion of hypotheses accepted as H; among all
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true alternatives H;. Average powers of the different simulations correspond-
ing to different values of mg/m and m are shown on Figure 4.

First, we can see that the powers of Hy and Hsy are not very sensitive to the
number of hypotheses m for both the standard Procedure 1 and the adaptive
Procedure 1. Secondly, the adaptive Procedure 1 is more powerful than the
standard Procedure 1 (red and blue dashed lines respectively above red and
blue solid lines in Figure 4). The benefit of the adaptive Procedure 1 over
the standard Procedure 1 decreases as the proportion of true null hypotheses
mgo/m increases (solid and dashed line of same color getting closer as mg/m
increases in Figure 4). This is due to the fact that, as mg/m tends to 1, mg
and then mg tend to m. As a result, the adaptive and standard Procedure
1 become similar.

REMARK 5.1.  We observe that, given a certain procedure (standard or
adaptive Procedure 1), the average power of Hy is lower than the average
power of Ha (for our particular choice of parametric models for the alterna-
tives Hy and Hs), see Figure 4. It is not due to the choice of parameters as
both alternatives Hy and Hy are simulated to share the same power (80%)
with the single test procedure. Actually, it comes from the fact that the p-
values under Hy are stochastically smaller than the p-values under Hy (see
the supplementary material (Briane, Kervrann and Vimond, 2017, Figure
2)). Then, the true superdiffusive trajectories are more easily detected as
non Brownian in the first step of the (adaptive) Procedure 1 than the true
subdiffusive trajectories. We note that, if we use other parametric models for
modelling subdiffusion (Hy) and superdiffusion (Hz), we can have the oppo-
site situation. The main idea is that, as long as the distribution of p-values
are not similar under the alternatives Hy and Ho, one of the two alternative
Hy or Hy will always be favoured by the (adaptive) Procedure 1.

Finally, we compare the adaptive Procedure 1 to the MSD classification
of Feder et al. (1996), based on a fit of the MSD curve to t — t% | see
Section 2.1. We assess the two methods on a single collection of trajectories
X with m = 200 and mg/m = 0.4, composed of a mixture of Brownian
motion, subdiffusion and superdiffusion as described at the beginning of this
section. We get the confusion matrices Table 7 and 6 for respectively the
adaptive Procedure 1 and the MSD method. As suggested by the limiting
curves used by Feder et al. (1996) (see Figure 2), the MSD method mixes
up the Brownian trajectories with both subdiffusion and superdiffusion (see
line 1 of Table 6). Another big issue is that 40% of the particles undergoing
subdiffusion are considered as immobile by the MSD method. On the other
hand, the adaptive procedure 1 detects well subdiffusion and superdiffusion
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TABLE 6
Confusion matriz for the MSD method

Ground truth/Test label ~Brownian Subdiffusion Superdiffusion Not moving

Brownian 19 45 36 0

Subdiffusion 0 60 0 40

Superdiffusion 3 0 97 0

Not moving 0 0 0 0
TABLE 7

Confusion matriz for the adaptive Proc.1

Ground truth/Test label Brownian Subdiffusion Superdiffusion

Brownian 96 0 4
Subdiffusion 23 s 0
Superdiffusion 10 0 90

in the setting of this simulation (line 2 and 3 of Table 7). More importantly,
it controls the number of false discoveries through the FDR (line 1 of Table
7).

5.3. Real data : the Rabl1a protein sequence. Fluorescence imaging and
microscopy has a prominent role in life science and medical research. It
consists of detecting specific cellular and intracellular objects of interest at
the diffraction limit (200 nm). These objects are first tagged with genetically
engineered proteins that emit fluorescence. Then, they can be observed using
wide field or confocal microscopy. Several image analysis methods have been
developed to quantify intracellular trafficking, including object detection and
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tracking of fluorescent tags in cells (Chenouard et al. (2014); Kervrann et al.
(2016)).

Here, we are particularly interested in studying the exocytosis process,
that is the mechanism of active transport of proteins out of the cell. Small
structures, called the vesicles, travel from organelles to the cell membrane,
propelled by motor activity. The vesicle fuses with the plasma membrane
and delivers the transported protein in the extra-cellular medium. Given
computed trajectories, we investigate here the quantification of vesicles dy-
namics and trafficking. As explained earlier in the paper, the trajectories can
be generally classified into three categories : Brownian motion, subdiffusion
and superdiffusion.

As a model of exocytosis/recycling, we focus on the Rabl1a protein. This
protein is a member of the dynamic architecture of the complex molecular
assembly which regulates recycling organelles trafficking. It plays an essential
role in the regulation of late steps of vesicle recycling to the plasma mem-
brane, namely the tethering-docking process (Schafer et al. (2014)). During
exocytosis, Rablla is attached to the vesicle membrane. Then, tracking
Rablla amounts to tracking the vesicle during the exocytosis phase. After
the fusion of the vesicle to the cell membrane, Rablla is recycled in the
cytosol. During the recycling step, the tracking of Rablla is not accurate as
the proteins are detached from the vesicle and scatter around the cytosol. It
is currently under investigation. For that reason, we focus on the exocytosis
process until the fusion time with the cell membrane.

An illustration of the Rablla sequence is shown in Figure 5 where the
dark spots correspond to Rablla vesicles in a “crossbow” micro-patterned
shape cell. A typical image extracted from an image sequence is shown Fig-
ure 5. The image sequence is composed of 600 images of size 256 x 240
(1 pixel=160nm) acquired at 10 frames/s (A = 0.1s) . We tracked 1561
trajectories with the multiple hypothesis tracking method with default pa-
rameters (Chenouard et al. (2013)), available on the Icy software (http:
www.icy.org). However, we discarded too small and to long trajectories

Live-cell imaging is performed using simultaneous dual color Total Internal Reflec-
tion Fluorescence (TIRF) microscopy. All imaging acquisition was carried out in full con-
ditioned medium at 37°C and 5% CO2 unless otherwise indicated. Simultaneous dual
color TIRF microscopy sequences were acquired on a Nikon TE2000 inverted microscope
equipped with a x100 TIRF objective (NA=1.49), an Azymuthal TIRF module (Ilas2,
Roper Scientifc), an image splitter (DV, Roper Scientific) installed in front of an EMCCD
camera (Evolve, Photometrics) that can be bypassed or not, depending on the experimen-
tal conditions and a temperature controller. GFP and m-Cherry were excited with a 488
nm and a 561 nm laser, respectively (100mW). The system was driven by the Metamorph
software (Molecular Devices).
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corresponding to tracking errors in most cases. We used a second molecu-
lar marker (Transferin Receptor (TfR)) to select trajectories related to the
transport of vesicles until the fusion time. The transmembrane TfR protein
is fluorescently labeled with a pH-sensitive probe, the pHluorin. Before the
fusion time, the pH inside the vesicle is acidic, leading to a very low pHluorin
photon emission. When the vesicle fuses to the plasma membrane, the pHlu-
orin gets exposed to the neutral extracellular medium and the fluorescence
suddenly increases in the TIRF image plane. This feature allows us to detect
the fusion time and the end of the exocytosis process (Basset et al. (2015)).
Now the steps to select the trajectories of Rablla undergoing exocytosis are
the following ones :

1. We simultaneously observe two sets of trajectories : TfR and Rablla
trajectories.

2. We match each trajectory of Rablla with the corresponding trajectory
of TfR.

3. We cut the trajectory of Rablla at the time when the matched tra-
jectory of TfR starts (fusion time).

There is an additional step of selection of trajectories based on mathematical
considerations. As we model particles motions with the diffusion processes
2.1, the particles are expected to move over time. Then, we have to get rid of
the particles that do not move enough and consequently, can not be modelled
by diffusion processes. In practice, we analyse only the trajectories with at
least 20 distinct positions and the vesicles that stop at the same position
less than K = |[n/10] times (with n the length of the trajectory). In the
case of the aforementioned image sequence, we end up with 166 trajectories
whose median length is n = 83.

In Figure 5, our results show that the four procedures — adaptive Proce-
dure 1, standard Procedure 1, single test and MSD method — do not produce
similar classification results visually. From the simulations, we found that
the MSD method tends to wrongly over-detect subdiffusion and superdif-
fusion (see Tables 6 and 7). This is probably true also in the case of real
Rabl1la sequence. In Table 8, we give the proportion of each type of diffusion
for the different methods aforementioned. The adaptive Procedure 1 tends
to decrease the number of Brownian trajectories compared to the standard
Procedure 1. It is not surprising as the adaptive Procedure 1 is defined to be
more powerful than the standard Procedure 1 : it rejects more easily the null
hypothesis. This gain in power benefits to the alternative H; (subdiffusion).
In fact we detect 23% of subdiffusion for the adaptive Procedure 1 against
16% for the standard Procedure 1 while both detect 4% of superdiffusion
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TABLE 8
Percentages of Brownian, superdiffusive and subdiffusive trajectories in the Rabl1la
sequence according to the different methods of classification.

Method Brownian  Subdiffusion = Superdiffusion
Standard Proc. 1 80 16 4
adaptive Proc. 1 73 23 4
Single test 66 28 6
MSD 16 63 21

(see Table 8). The single test procedure detects even less Brownian motion
but we know that it can not control the FDR. In Figure 5, the subdiffusion
trajectories labelled with the test approach are more located in the center of
the cell in a region corresponding to the Endosomal Recycling Compartment
which is known to organize Rablla carrier vesicles (Schafer et al. (2014)).
It is also true for the subdiffusion trajectories labelled with the MSD anal-
ysis but we have just said that there is probably an over-detection of the
subdiffusion with this method. We note that we carry the classification of
trajectories with our different test procedures and the MSD method on mul-
tiple sequences of Rablla protein, see the supplementary material (Briane,
Kervrann and Vimond, 2017, Figure 1).

6. Discussion. In this paper, we proposed a method for classifying the
particle trajectories observed in living cells into three types of diffusion :
Brownian motion, subdiffusion and superdiffusion. We used a test approach
with the Brownian motion as the null hypothesis. More specifically, we de-
veloped a non-parametric three-decision test whose alternatives are subdif-
fusion and superdiffusion. On the one hand we built a single test procedure
for testing a single trajectory, on the other hand we proposed a multiple test
procedure for testing a collection of trajectories. These procedures control
respectively the type I error and the false discovery rate at level a. It is
worth noting that the length of the trajectory n is taken into account in our
classification rule. Our approach can be considered as an alternative to the
MSD method. It gives more reliable results as confirmed by our Monte Carlo
simulations and evaluations on real sequences of images depicting protein
dynamics acquired with TIRF or SPT-PALM microscopy.

Acknowledgements. We thank Jean Salamero (UMR, 144 CNRS-Institut
Curie) who provided the microscopy image sequences and for his helpful in-
sights and assistance with experiments.
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F1G 5. Map of the classification of the trajectories of the Rabl1a sequence with (a) standard
multiple test procedure 1, (b) its adaptative version, (¢) MSD, (d) single test procedure.
The following colour code is used : blue (Brownian motion), red (superdiffusion) and green

(subdiffusion).

SUPPLEMENTARY MATERIAL

Supplement A: Source code
(https://serpico.rennes.inria.fr/doku.php?id=software:thot:index). matlab code
source
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