A. Basset, P. Bouthemy, J. Boulanger, F. Waharte, C. Kervrann et al., Detection and estimation of membrane diffusion during exocytosis in TIRFM image sequences, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.695-698, 2015.
DOI : 10.1109/ISBI.2015.7163968

URL : https://hal.archives-ouvertes.fr/hal-01246448

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B, pp.289-300, 1995.

Y. Benjamini and Y. Hochberg, On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics, Journal of Educational and Behavioral Statistics, vol.25, issue.1, pp.60-83, 2000.
DOI : 10.3102/10769986025001060

H. Berry and H. Chaté, Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes, Physical Review E, vol.296, issue.2, p.22708, 2014.
DOI : 10.1038/nature06201

URL : https://hal.archives-ouvertes.fr/inria-00575651

B. M. Bibby and M. Sørensen, Martingale Estimation Functions for Discretely Observed Diffusion Processes, Bernoulli, vol.1, issue.1/2, pp.17-39, 1995.
DOI : 10.2307/3318679

P. Billingsley, Convergence of probability measures, 2013.
DOI : 10.1002/9780470316962

A. N. Borodin and P. Salminen, Handbook of Brownian Motion-Facts and Formulae, 1996.

P. C. Bressloff, Stochastic Processes in Cell Biology 41, 2014.
DOI : 10.1007/978-3-319-08488-6

P. C. Bressloff and J. M. Newby, Stochastic models of intracellular transport, Reviews of Modern Physics, vol.12, issue.1, p.135, 2013.
DOI : 10.1021/j100189a004

V. Briane, M. Vimond, and C. Kervrann, An adaptive statistical test to detect non Brownian diffusion from particle trajectories, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.972-975, 2016.
DOI : 10.1109/ISBI.2016.7493427

URL : https://hal.archives-ouvertes.fr/hal-01416855

N. J. Brunel and Q. Clairon, A tracking approach to parameter estimation in linear ordinary differential equations, Electronic Journal of Statistics, vol.9, issue.2, pp.2903-2949, 2015.
DOI : 10.1214/15-EJS1086

URL : https://hal.archives-ouvertes.fr/hal-01078167

N. Chenouard, Multiple Hypothesis Tracking for Cluttered Biological Image Sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.11, pp.2736-3750, 2013.
DOI : 10.1109/TPAMI.2013.97

N. Chenouard, I. Smal, F. De-chaumont, M. Ma?ka, I. F. Sbalzarini et al., Objective comparison of particle tracking methods, Nature Methods, vol.6362, issue.3, p.281, 2014.
DOI : 10.1038/nmeth.2019

URL : https://hal.archives-ouvertes.fr/hal-00932869

J. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Statistical Inference for stochastic processes 4, pp.199-227, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00383118

G. Didier and K. Zhang, The asymptotic distribution of the pathwise mean-square displacement in single-particle tracking experiments. arXiv preprint, 2015.

A. Einstein, Investigations on the Theory of the Brownian Movement, 1956.

T. C. Elston, A macroscopic description of biomolecular transport, Journal of Mathematical Biology, vol.41, issue.3, pp.189-206, 2000.
DOI : 10.1007/s002850000043

T. J. Feder, I. Brust-mascher, J. P. Slattery, B. Baird, and W. W. Webb, Constrained diffusion or immobile fraction on cell surfaces: a new interpretation, Biophysical Journal, vol.70, issue.6, p.2767, 1996.
DOI : 10.1016/S0006-3495(96)79846-6

URL : http://doi.org/10.1016/s0006-3495(96)79846-6

H. Finner and M. Roters, On the False Discovery Rate and Expected Type I Errors, Biometrical Journal, vol.43, issue.8, pp.985-1005, 2001.
DOI : 10.1002/1521-4036(200112)43:8<985::AID-BIMJ985>3.0.CO;2-4

D. Florens-zmirou, Approximate discrete-time schemes for statistics of diffusion processes, Statistics, vol.19, issue.4, pp.547-557, 1989.
DOI : 10.2307/3214063

C. Fuchs, Inference for Diffusion Processes: With Applications in Life Sciences, 2013.
DOI : 10.1007/978-3-642-25969-2

N. Gal, D. Lechtman-goldstein, and D. Weihs, Particle tracking in living cells: a review of the mean square displacement method and beyond, Rheologica Acta, vol.5, issue.5, pp.425-443, 2013.
DOI : 10.1098/rsif.2008.0052

A. Grandhi, Multiple Testing Procedures for Complex Structured Hypotheses and Directional Decisions, 2015.

W. Guo and J. P. Romano, On stepwise control of directional errors under independence and some dependence, Journal of Statistical Planning and Inference, vol.163, pp.21-33, 2015.
DOI : 10.1016/j.jspi.2015.02.009

J. M. Henley, E. A. Barker, and O. O. Glebov, Routes, destinations and delays: recent advances in AMPA receptor trafficking, Trends in Neurosciences, vol.34, issue.5, pp.258-268, 2011.
DOI : 10.1016/j.tins.2011.02.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314507

N. Hoze, D. Nair, E. Hosy, C. Sieben, S. Manley et al., Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging, Proceedings of the National Academy of Sciences, pp.17052-17057, 2012.
DOI : 10.1016/S0006-3495(01)75884-5

J. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-unkel et al., Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules, Physical Review Letters, vol.26, issue.4, p.48103, 2011.
DOI : 10.1073/pnas.0700672104

URL : http://arxiv.org/abs/1010.0347

G. J. Jiang and J. L. Knight, A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model, Econometric Theory, vol.19, issue.05, pp.615-645, 1997.
DOI : 10.2307/2328983

C. Kervrann, C. O. Sorzano, S. T. Acton, J. C. Olivo-marin, and M. Unser, A Guided Tour of Selected Image Processing and Analysis Methods for Fluorescence and Electron Microscopy, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.1, pp.6-30, 2016.
DOI : 10.1109/JSTSP.2015.2505402

URL : https://hal.archives-ouvertes.fr/hal-01246375

A. Kusumi, Y. Sako, and M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophysical Journal, vol.65, issue.5, p.2021, 1993.
DOI : 10.1016/S0006-3495(93)81253-0

T. Lagache, E. Dauty, and D. Holcman, Quantitative analysis of virus and plasmid trafficking in cells, Physical Review E, vol.79, issue.1, p.11921, 2009.
DOI : 10.1119/1.1972842

M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and related properties of random sequences and processes, 1983.
DOI : 10.1007/978-1-4612-5449-2

F. W. Lund, SpatTrack: An Imaging Toolbox for Analysis of Vesicle Motility and Distribution in Living Cells, Traffic, vol.7, issue.12, pp.1406-1429, 2014.
DOI : 10.1109/83.650848

M. Lysy, N. S. Pillai, D. B. Hill, M. G. Forest, J. W. Mellnik et al., Model Comparison and Assessment for Single Particle Tracking in Biological Fluids, Journal of the American Statistical Association, vol.8, issue.516, 2016.
DOI : 10.1103/PhysRevLett.92.178101

URL : http://arxiv.org/abs/1407.5962

V. Maroulas and A. Nebenführ, Tracking rapid intracellular movements: A Bayesian random set approach, The Annals of Applied Statistics, vol.9, issue.2, pp.926-949, 2015.
DOI : 10.1214/15-AOAS819

URL : http://arxiv.org/abs/1509.04841

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, vol.339, issue.1, pp.1-77, 2000.
DOI : 10.1016/S0370-1573(00)00070-3

X. Michalet, Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium, Physical Review E, vol.82, issue.4, p.41914, 2010.
DOI : 10.1103/PhysRevE.82.011917

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes 1929, 2008.
DOI : 10.1007/978-3-540-75873-0

D. Nualart and Y. Ouknine, Regularization of differential equations by fractional noise, Stochastic Processes and their Applications, pp.103-116, 2002.
DOI : 10.1016/S0304-4149(02)00155-2

C. S. Peskin and G. Oster, Coordinated hydrolysis explains the mechanical behavior of kinesin, Biophysical Journal, vol.68, p.202, 1995.

H. Qian, M. P. Sheetz, and E. L. Elson, Single particle tracking. Analysis of diffusion and flow in two-dimensional systems, Biophysical Journal, vol.60, issue.4, p.910, 1991.
DOI : 10.1016/S0006-3495(91)82125-7

D. Rasch, Hypothesis testing and the error of the third kind, Psychological Test and Assessment Modeling, vol.54, pp.90-99, 2012.

P. Reimann, Brownian motors: noisy transport far from equilibrium, Physics Reports, vol.361, issue.2-4, pp.57-265, 2002.
DOI : 10.1016/S0370-1573(01)00081-3

URL : http://arxiv.org/abs/cond-mat/0010237

E. Roquain, Type I error rate control in multiple testing: a survey with proofs, Journal de la Société Française de Statistique, vol.152, pp.3-38, 2011.

M. J. Saxton, Lateral diffusion in an archipelago. Single-particle diffusion, Biophysical Journal, vol.64, issue.6, pp.1766-1780, 1993.
DOI : 10.1016/S0006-3495(93)81548-0

URL : http://doi.org/10.1016/s0006-3495(82)84504-9

M. J. Saxton, Anomalous diffusion due to obstacles: a Monte Carlo study, Biophysical Journal, vol.66, issue.2, p.394, 1994.
DOI : 10.1016/S0006-3495(94)80789-1

URL : http://doi.org/10.1016/s0006-3495(94)80789-1

M. J. Saxton, Anomalous diffusion due to binding: a Monte Carlo study, Biophysical Journal, vol.70, issue.3, p.1250, 1996.
DOI : 10.1016/S0006-3495(96)79682-0

M. J. Saxton and K. Jacobson, Single Particle Tracking, Annual Review of Biophysics and Biomolecular Structure, vol.26, pp.373-399, 1997.
DOI : 10.1007/978-1-59745-397-4_6

J. C. Schafer, N. W. Baetz, L. A. Lapierre, R. E. Mcrae, J. T. Roland et al., Rab11-FIP2 Interaction with MYO5B Regulates Movement of Rab11a-Containing Recycling Vesicles, Traffic, vol.9, issue.3, pp.292-308, 2014.
DOI : 10.1371/journal.ppat.1003278

J. P. Shaffer, Control of directional errors with stagewise multiple test procedures . The Annals of Statistics, pp.1342-1347, 1980.

J. P. Shaffer, Multiple Hypothesis Testing, Annual Review of Psychology, vol.46, issue.1, pp.561-584, 1995.
DOI : 10.1146/annurev.ps.46.020195.003021

M. S. Taqqu, Fractional Brownian motion and long-range dependence. Theory and applications of long-range dependence, pp.5-38, 2003.

N. L. Za¨?diza¨?di and D. Nualart, Smoothness of the law of the supremum of the fractional Brownian motion, Electronic Communications in Probability, vol.8, issue.0, pp.102-111, 2003.
DOI : 10.1214/ECP.v8-1079