Determination of Lead (Pb) Content in Vetiver Grass Roots by Raman Spectroscopy

Abstract : In order to provide references for heavy metals diagnosis of Vetiver grass, Raman spectroscopy technology was employed, the partial least squares (PLS) quantitative analysis model of heavy metal lead of Vetiver grass root was established, different processing methods were used to optimize the Raman spectra of Vetiver grass roots, Successive projection algorithm (SPA) was applied to screen the bands of Raman spectrum and enhance the model’s accuracy. The best Raman spectroscopy quantitative analysis model of lead content in Vetiver grass root were set up, 20 unknown samples were used to test the quality of optimized model. The prediction correlation coefficient and the root mean square error were 0.607 and 0.040 g/kg, respectively.
Type de document :
Communication dans un congrès
Daoliang Li; Zhenbo Li. 9th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2015, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-478 (Part I), pp.292-299, 2016, Computer and Computing Technologies in Agriculture IX. 〈1010.1007/978-3-319-48357-3_29〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01557819
Contributeur : Hal Ifip <>
Soumis le : jeudi 6 juillet 2017 - 15:50:05
Dernière modification le : jeudi 6 juillet 2017 - 15:54:11
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 02:04:07

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Yande Liu, Yuxiang Zhang, Lixia Jiang, Haiyang Wang. Determination of Lead (Pb) Content in Vetiver Grass Roots by Raman Spectroscopy. Daoliang Li; Zhenbo Li. 9th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2015, Beijing, China. IFIP Advances in Information and Communication Technology, AICT-478 (Part I), pp.292-299, 2016, Computer and Computing Technologies in Agriculture IX. 〈1010.1007/978-3-319-48357-3_29〉. 〈hal-01557819〉

Partager

Métriques

Consultations de la notice

45