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Abstract

The ever increasing complexity of distributed systems mandates to formally
verify their design and implementation. Unfortunately, the common approaches
and existing tools to formally establish the correctness of these systems remain
hardly applicable to most legacy HPC applications, that are commonly written
in Fortran or C/C++, using the MPI standard.

This work addresses the problem of automatically detecting at system-level
the equality of the application’s state. This allows to automatically verify safety
and liveness properties on legacy HPC applications. We present how this state
equality detection can be achieved without any source code static analysis, but
at runtime using memory introspection and classical debugging techniques.

We demonstrate the effectiveness of our approach through the exhaustive
verification of several programs from the MPICH3 test suite and through the
partial termination analysis of some applications from the Competition on Soft-
ware Verification (SV-COMP).

1. Introduction

Model checking is an appealing automated technique to establish the correct-
ness of distributed systems. But applying this technique to legacy applications
requires a complete model of the application. Manually building such mod-
els is error-prone and labor-intensive. Keeping the resulting model up to date
when the real application is modified constitutes another challenge. A guided
approach such as the CEGAR abstraction/refinement methodology [1] can ease
this modeling step, but the user still needs a high level of expertise in formal
methods. Static code analysis [2] can automatically reconstruct a model, thus
removing the burden induced by the modeling step. This interesting approach is
used in many existing tools [3, 4, 5]. Our work is in line with another approach
called formal dynamic verification (or execution-based model checking), where
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the model is not explicitly known but only implicitly explored through the ac-
tual execution of the real application. The verification is thus performed on the
concrete implementation of the application. In some sense, it is orthogonal with
the static analysis, as static analysis and dynamic verification gather comple-
mentary but not redundant information: these approaches could be combined
in the same tool.

Ultimately, our goal is to dynamically verify unmodified legacy distributed
applications composed of sequential processes interacting through message pass-
ing. We do not aim at certifying such applications, but at finding issues. We
dynamically verify real applications toward bug finding through falsification.

We build upon the SimGrid framework, initially intended to assess the per-
formance of distributed applications [6], and upon the SimGridMC module to
dynamically verify the correctness of these applications [7]. It exhaustively ex-
plores the execution paths that the verified application could follow from a initial
situation provided by the user. The considered non-deterministic choices consist
in the message reception order: when two messages A and B are in flight, the
verification consists in first exploring the execution path where the message A
is delivered before B. The application is then rewinded to explore the execution
path where B is delivered first. Since we work with legacy applications, the
state consists in the heap, the stacks and all global variables. Each transition
encompasses a message reception by a process, and its sequential execution up
to the next message exchange. The sequential execution blocks are supposed to
be deterministic. We believe that these assumptions are realistic and sufficient
for mono-threaded MPI-like computational applications, which outcome typi-
cally only depends on the input data provided in the initial state and on the
message delivery order. Leveraging the simulator architecture to fold the veri-
fied application into a single local process makes it easier to inspect, checkpoint
and rewind the complete system state. The state space explosion problem is
mitigated through Dynamic Partial Ordering Reduction (DPOR) [7].

In the current work, we tackle the problem of comparing system-level states
of arbitrary legacy applications written in Fortran or C/C++. Detecting state
equalities is mandatory to detect infinite executions and cycles, and makes it
possible to verify liveness properties. Specifically, this article makes the fol-
lowing contributions: we detail the challenges posed by the system-level state
equality detection. We propose solutions to mitigate each of those difficulties,
leveraging debugging techniques to retrieve semantic information on the appli-
cation. We show the practical effectiveness of our proposal through several sets
of experiments: we detect liveness violations in a custom MPI code; we show
the absence of infinite execution paths in programs from a Software Verification
Competition; we exhaustively explore an infinite-time MPI application as well
as several of the MPI applications from the official MPICHS testsuite.

The remainder of this article is organized as follows: Section 2 presents
why state equality is an important problem for the formal verification of legacy
applications. Section 3 details our contribution, which is evaluated in Section 4.
Section 5 presents the related work while Section 6 concludes this article.



2. State Equality for the Formal Verification of Legacy Applications

Prior to this work, SimGridMC was stateless: only the system’s initial state
was checkpointed. When rewinding the application, the initial state was first
restored and then all transitions leading to the desired state were replayed.
This section presents several use cases of the state equality in the context of the
formal verification of legacy distributed applications.

2.1. Efficiently Verifying HPC Programs and State Equality Reduction

The stateless approach was satisfying in the considered context of Peer-
to-Peer (P2P) protocols, but it is less adapted to HPC applications, as the
computations make the execution path highly time-consuming in this case. It
is then interesting to checkpoint more states to directly restore the desired
state instead of reconstructing it iteratively. Another advantage of the stateful
exploration is to reduce the size of the explored state space by cutting the
exploration when reaching a state that was already explored. In principle, this
reduction technique is complementary to other ones such as DPOR.

The first limitation of the existing stateful verification tools is that they ei-
ther only save parts of the system state after decomposition [8] or only save
a bitstate hash of each reachable state rather than the full state [9]. This is
probably due to classical memory space restrictions, but not saving the inter-
mediate states forces to recompute them on need. Nowadays, some computers
are equipped with terabytes of memory. This makes it possible (and thus ap-
pealing) to checkpoint and analyze the whole memory state of medium-size
applications, or smaller instances of legacy HPC applications.

Another limitation of the existing stateful verification tools is that they
target abstract models. Adapting these techniques to legacy HPC applications
is technically very challenging because we usually lack the abstract model of
these applications that are typically written in Fortran or C/C++.

Instead of adapting bitstate hash techniques to legacy applications, we check-
point the full application state: the heap, the stacks and the sections containing
the global variables are copied. Capturing thousands to million of states, as
required by typical verifications, can rapidly exhaust the available memory. In
many applications, only a small part of the memory changes between consec-
utive states. In some applications 99% of the memory pages do not change
between consecutive states. Our snapshots are thus compacted by exploiting
the similarity between states: identical memory pages (ie, memory segments of
size 4KiB) are shared between snapshots.

2.2. Verifying Arbitrary Liveness Properties on Legacy Code

The execution loops detected by the state equality mechanism constitute
non-progressive cycles. They play a central role in the verification of liveness
properties, since the counterexample to liveness properties are infinite paths. If
the application state size is bounded (in particular, if the stack size is bounded),
most infinite paths contain such an execution loop. Liveness properties are then



verified through the search of acceptance cycles in the Cartesian product of
the application with a Biichi automaton encoding the negation of the verified
property. If found, such an acceptance cycle denotes an infinite execution path
which constitutes a counterexample to the property.

This approach can sometimes be used to falsify the program termination us-
ing the property “Always, Eventually, the program terminates”. If it is naturally
impossible to solve the Halting Problem in all generality, it remains sometimes
possible to prove whether a given program terminates or not [10]. Dynamic ver-
ification can check the termination of any finite protocol, although sometimes
inefficiently) It could also correctly diagnose applications that do not terminate
because of non-progressive cycles, provided that these cycles are detected. This
approach fails on applications which do not terminate but whose state changes
infinitely often, which is consistent with the indecidability of the Halting Prob-
lem.

MaceMC [11] is the verification tool that comes closest to our work since
it is able to verify some liveness properties on concrete implementations of dis-
tributed systems. Instead of detecting the acceptance cycles, it looks for the
so-called critical transition that plunged the property into a violation. The
exploration performance is then improved using state hashing. This approach
remains however limited to the restricted set of liveness properties that can be
expressed as (O0Op (Always Eventually p) where p is a logical predicate, while
detecting acceptance cycles can be used to verify arbitrary LTL_x formula.

2.8. Verifying (infinite-time) Cyclic Protocols

Non-progressive cycles constitute an inherent part of a whole class of appli-
cations, such as the cyclic protocols which react to external periodic events, as
most P2P protocols do.

Stateless DPOR, cannot study such systems because even if it reduces the
amount of explored interleavings by detecting the independent actions, it does
not detect all execution cycles. The state space is still infinite after the DPOR
and thus cannot be explored explicitly during a dynamic verification. On the
contrary, a state equality reduction cuts the repetitive patterns of the application
behavior, which permits the exhaustive verification of cyclic protocols.

3. System-level State Equality Detection

The stateful verification mandated by the previously presented use cases
requires to efficiently determine at system-level whether two given application
states are semantically equal or not. All relevant memory area must be included
in this comparison, including global variables, the heap, the simulated processes’
stacks, as well as the simulator’s network state.

Comparing memory byte per byte is not sufficient to detect the state equal-
ity, as it detects many syntactic differences that are not significant to the ap-
plication semantic. For example, the numerical values of pointers on different
memory areas are syntactically different while the pointed memory areas could



be semantically equivalent. Such false negative must be avoided by all means,
as the tool could fail to detect some state equalities, possibly leading to the non-
detection of property violations. The key to a better state equality detection
lies in the ability to introspect the memory and to reconstruct the semantic of
bits.

For Java applications, the whole memory is handled by the virtual machine.
Using the meta-data known to the JVM, it is thus possible to reconstruct the
semantic of each byte in memory, making it possible to detect system state
equalities. However, this would probably require to modify the JVM directly,
as Java introspection is more intended to explore the values of objects’ content
rather than exploring the meaning of memory locations. Adding the needed
meta-data and keeping them in sync in the whole JVM source code constitutes
a daunting task, but remains feasible [12].

However, Java is rarely used in the context of HPC applications using MPI,
calling for another approach that would be applicable to C/C++ applications.
In [13], the user must provide a hashing function that can be used to detect the
state equalities. Detecting system state equalities is easier when the complete
data semantic is known, but this remains a burdensome and highly error-prone
task, hardly adaptable to complex systems. In the following, we propose a
generic solution which operates at the operating system level. Instead of spec-
ifying the segments of memory that are relevant to the system’s semantic, we
start by considering the whole system memory, and optionally ignore some sec-
tions that are known to be irrelevant.

The system state that we consider aggregates the application’s global vari-
ables, the application’s heap and the stack of each process (Fig. 1). The global
variables of the simulator are also included in the comparison, as they contain
the network’s state during the simulation. At the OS-level, these data are stored
in several memory segments that must be considered separately. In the follow-
ing, we detail our approach using Linux as an example, but our implementation
was successfully ported to FreeBSD. Porting our code to other operating sys-
tems is certainly possible, even if it would be somehow harder for non-Unix
systems.

In the remainder of this section, we detail the causes of the syntactic dif-
ferences that defeat the byte per byte comparison of memory segments. For
each of these challenges, we show how additional information could be retrieved
from the system, and leveraged to rebuild the needed semantic information. For
some of these difficulties, we must rely on heuristics that could conclude on the
difference of semantically equal states. This must be avoided when possible, as
this could jeopardize the soundness of the verification process. That is why we
do not aim at certifying the verified applications, but rather at finding bugs that
are hard to detect on real applications.

8.1. Uninitialized Data and Memory Overprovisioning

The first source of syntactic differences that are not relevant to the semantic
equality lies in uninitialized data. In contrast to Java, the memory handed over
to the user is not initialized by the C/C++ runtime because of performance
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Figure 1: Memory layout of a process.

concerns. This is true for the blocks allocated on the heap (that still contain
the content of their previous use), and also for the stack (which still contains
the frames of returned functions).

In addition, most dynamic memory allocation libraries (such as malloc im-
plementations) allocate memory chunks whose sizes are powers of two to avoid
the memory fragmentation. For example, a memory area of 64 bytes will be
used to serve a request of 48 bytes. It is expected that the application only uses
the requested area while the extra area remains unused (Fig. 2). In our context,
this memory overprovisioning may result in irrelevant byte differences that are
not trivial to address at the application level, as the extra memory area are not
directly known to the application but still contain the arbitrary data, written
by the previous use of that chunk.

allocated size 256 256 512 1024 256 256 1024 512

17 77 2 77777
R 77 7 77777
AR 77 7 77777

size used 240200 400 924 256 648

Figure 2: Memory allocation with overprovisioning.

SimGridMC provides a specific implementation of malloc to address both
problems of uninitialized heap area and heap over-provisioning. A first approach
for heap over-provisioning is to only consider the user-requested area during the
state comparison and to ignore the extra memory. But this would not work for
applications that exhibit small buffer overflows. Indeed, if the application acci-
dentally overflows from the requested area while remaining within the bounds
of the corresponding malloc chunk, the problem will remain usually harmless,
but our analysis would fail to capture the whole state. Instead, we address this
issue by filling each newly allocated area with zeroes before handing it to the



application. This ensures that every value is specified while remaining robust
to limited buffer overflows. Although SimGridMC is not initially intended to
detect this kind of bug, we could add an option to detect and report heap over-
flows, e.g. with mprotected pages located after each allocated block. Similarly,
zeroing memory areas may hide bugs resulting from undefined behaviors and
other tools and approaches should be used to track these issues.

Uninitialized data and memory over-provisioning also occur within the pro-
cesses’ stacks. The local variables may remain unset by the user program while
the memory occupied by a stack frame is not zeroed out by the system when
a function returns. We circumvent this problem by only considering the stack
area that is in active stack frames and optionally by zeroing out the stack frame
at the beginning of each function. This is currently implemented by modifying
the assembly code generated by the compiler before giving it to the assembler:
a script estimates the size of the stack frame of each function by parsing its
assembly code, and adds assembly instructions that zero out the stack frame at
the beginning of the function. This script has been used with both GCC and
Clang for C, C++ and Fortran input. It is currently implemented for x86_64
only but could easily be ported to other targets. This post—processing must
be done for the whole application and the simulator, or it could be completely
omitted if the user code initialize every local variables when declaring them.

8.2. Sparse Memory and Padding Bytes

The compiler enforces memory alignment constraints to speed up the data
movements between the memory and the CPU registers. The address of each
variables must be a multiple of its size. For example, short integers (of size 2
bytes) must reside at even addresses. This results in sparse memory layouts with
padding bytes added between the variables (as depicted on Fig. 3), leading to
irrelevant syntactic differences if the values of those padding bytes are compared.

Strulclt foo { Padding bytes

char c;

int i; struct member ¢ A/l s \A p
short s; 255557 702002000077
void *p; ' 200057 502502500057

) size (bytes) 1 3 4 2 6 8

Figure 3: Data memory alignment is preserved by adding unused padding bytes.

On some platforms, it is possible to disable these padding bytes, using the
#pragma pack(1l) compiler directive. But the resulting major performance im-
pact mandates for other solutions because misaligned data requires several cycles
to move from memory to the CPU registers.

In the heap, our solution to the previous issue happens to address that
problem too, since the padding bytes are zeroed out and thus specified. This
remains problematic in the stack despite zeroing it out for two reasons. First,
each stack frame is protected by the system against buffer overflow and stack



smashing security attacks through the addition of arbitrary data in the stack by
the system. Any change to this data is interpreted by the system as a security
attack. If integrated to the comparison, this arbitrary data could defeat the
state equality detection. In addition, several local variables can share the same
location in the stack memory if they do not exist at the same time of the program
flow. This may lead to temporally unused memory areas in the stack.

Our approach is to focus on the actual data stored on the stack and to ignore
the unspecified values and padding bytes. We retrieve the needed information
from the debugging symbols using two complementary libraries: libunwind! is
used to analyze the content of each stack frame and retrieve the address and
type of local variables. The memory layout of each encountered data type (size
and alignment constraints) is in turn retrieved from the DWARF?2-formatted
debugging information. This information is generated by the compiler so that
debuggers such as gdb can reconstruct the memory layout of the debugged pro-
cess. Our implementation works on Linux and FreeBSD only, but this approach
is portable to other systems. The DWARF format is also used on MacOS X
while Windows provide the same information under another format.

The DWARF information alone is sufficient to rebuild a fine-grain semantic
of each byte in the global segment. Coupled with libunwind, it is sufficient for
the stack segments. It is however not sufficient to reconstruct the semantic
for the heap, as the user can cast the allocated data to arbitrary types. This
difficulty is addressed in the following section.

8.8. Heap Dynamic Semantic Comparison

The last and most difficult technical lock of system-state state comparison
is due to the fact that the order in which memory blocks are allocated rarely
matters to the application semantic while it greatly impacts their actual location
in memory. Fig. 4 depicts two heaps that are semantically equivalent despite
their different block orderings. The content of blocks 0x30, 0x40 and 0x50 are
syntactically different, but these differences come from the fact that the block
0x30 of one heap corresponds to the block 0x40 of the other heap. The semantic
of these heaps is perfectly equivalent for the application.

Such situation often occurs in our context because the block ordering stems
from the order of malloc requests, which changes when the process execution
order changes, as in the dynamic verification.

Moreover, the numerical value of a pointer remains unchanged in C when
the pointed area is freed. As the system may reallocate the previously freed
memory, the pointed data may be completely different. It is a good habit as
a programmer to set the pointer variables to NULL in this case, but this is
not requested by the C standards. The manual detection of these dangling
pointers by the user is however essential to the soundness of our approach, as

Thttp://www.nongnu.org/libunwind/
2http://www.dwarfstd.org/



the comparison of unrelated memory areas leads to the non-detection of the
system state equality.

Even if there is no dangling pointer, detecting the semantic equality between
heaps in which blocks were reordered remains hard. We cannot directly leverage
DWARF debugging information, as the considered memory is allocated during
the execution and thus unknown at compile time when this information is pro-
duced. Type aliasing of heap data is also a common practice that defeats the
formal identification of the data types.

[0x10[1234] [0x20 [aSbY]
:? =

[0x10 | 1234] [0x20 |asbY]

Figure 4: Two heaps syntactically different but semantically identical.

In [14], the author presents a heap canonicalization algorithm that can re-
order the blocks in a canonical form to ease heap comparison. This approach
relies on a garbage collecting mechanism in a language where all references to
allocated data are clearly known to the system. A mark-and-sweep algorithm
is then conducted from all variables down to the blocks. The graph traversal
is deterministic by construction, and the blocks are reordered on-the-fly into a
canonical form.

This approach cannot be applied as is to our context because we cannot
assume that the verified application uses one of the existing garbage collector
for C/C++. We can retrieve the references located in local and global variables
according to their DWARF signature, but we will probably miss some references
located in heap blocks as we lack any semantic information on the content of
these blocks.

Because of these missing references, it is impossible to move memory blocks:
any reference still pointing to an old block location would cause the application
to abort immediately.

It is still possible to compare two given states on the fly using a mark-and-
sweep approach. Starting from the global and local pointer variables (identified
through libunwind and DWARF), all heap blocks that are reachable through
identified pointers are marked as equivalent in both states. We perform a partial
mark-and-sweep, starting from the variables we know and iterating on data
for which we have the debugging information. This traversal can have several
outcomes. It first stops when an inexplicable difference is found, indicating
that both states differ. It may also manage to match all blocks, despite their



potentially different location in both heaps, proving the equality of both states’
semantic.

But this traversal can only be a heuristic because of the missing typing
information. First and foremost, we lack any typing information about the data
on the heap. Then, the actual datatype may be unknown or hidden by void*
type aliasing. Finally, local variables may be hidden at some execution points
because of scoping rules within the function, hiding some valuable starts for the
mark-and-sweep traversal.

It is thus possible that some blocks allocated on the heap were not considered
during the traversal, because the pointer to them were not identified as such
because of missing typing information. The remaining blocks are then compared
byte per byte. If we find a difference, we attempt to explain this as a pointer
difference: in each heap, we read the aligned 8 bytes that contain the differing
byte as a pointer. If each value corresponds to the address of a valid heap block,
the comparison iterates recursively on the designated blocks.

The comparison algorithm can detect dangling pointers in some cases (when
they point to unallocated heap blocks or above the top of the stack). Better
detection of dangling pointers could be achieved by avoiding to reallocate heap
blocks as long as they are reachable.

The practical effectiveness of this heuristic is evaluated in Section 4.

8.4. User-identified Irrelevant Differences

Specific variables and memory areas can also be explicitly ignored during the
comparison. The user indicates to ignore the step number in a cyclic protocol,
the value of an iterator in a loop or any value that he considers irrelevant to its
state. A different system behavior resulting from the value of the counter will
be detected in the other memory areas, while this counter could be ignored.

The same mechanism is used to mask irrelevant differences caused by the
simulator internals, such as the total amount of messages sent during the simula-
tion or other similar statistics. Determining the sections to be manually marked
as irrelevant can be very tedious. In the future, we plan to issue a warning when
two states differ only by a very little amount of bytes, allowing the user to check
whether this difference must be marked manually or not.

3.5. Summary

Table 1 summarizes the difficulties encountered during the system-level com-
parison of state equality, and the solution that we propose in each case for both
the heap and the stack. As a final optimization, we test first and foremost
several efficient criteria such as the total amount of allocated blocks, allocated
data, and stack sizes of all processes. This allows to eliminate many candidate
states even before traversing the heaps.

4. Experimental Evaluation

This section evaluates our contribution through three sets of experiments
which illustrate the motivating examples of Section 2 that leverage state equal-
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Issue Heap solution Stack solution

Overprovisioning memset 0 Stack pointer detection
Uninitialized data memset 0 Stack cleaner by binary code modification
Padding bytes memset 0 DWARF + libunwind
Syntactic differences Dynamic semantic comparison N/A (sequential access)
Irrelevant differences Ignore explicit areas DWARF + libunwind + ignore

Table 1: Summary of issues and solutions for the system-level state equality detection.

ity detection in the context of dynamic verification of legacy applications. Sec-
tion 4.1 focuses on the exhaustive verification of several applications distributed
as part of the MPICH3 testsuite. Section 4.2 then evaluates the tool’s ability
to detect two kinds of liveness violation: on a custom MPI application and the
termination of a program. Section 4.3 demonstrates how state equality detec-
tion enables the exhaustive exploration of cyclic applications whose behavior is
regular but not bounded in time.

We used SimGrid (60,000 lines of code — git version d8710e), as our contri-
bution is integrated to the public version of this framework. These experiments
were conducted on a Intel(R) Xeon(R) CPU E7540 @ 2.00GHz, RAM 512GiB,
48 cores, with debian wheezy environment 3.2.0-4-amd64 and 3 extra packages
(cmake 2.8.9, libunwind7, and gfortran 4.7.2).

In all subsequent tables, ’#P’ is the total amount of processes in the studied
application, ’# States’ corresponds to the number of expanded states before
finding the counterexample (or the total number of states in the case of exhaus-
tive exploration), and 'Depth’ is the depth in which the counterexample has
been found (only for the verification of a liveness property).

4.1. Ezhaustive Verification of MPICHS3 Testcases

This first experiment focuses on the MPICHS testsuite®. This testsuite al-
lows to test the standard compliance of any MPI implementations. Not all of
the tested features are currently implemented in SimGrid so we eliminated the
corresponding tests. We verified several applications from this testsuite, each
of them lasting about 1,300 lines written in C or Fortran. These tests were not
modified from their original version. In particular, we did not manually mark
any sections as irrelevant, as presented in Section 3.4. Since our tool is writ-
ten in C and C++ itself, these experiments demonstrate our ability to verify
programs written in C/C++ or Fortran.

Our verification algorithm consisted in exploring every orders of network
message delivery that respect the causal constraint. We consider the blocks
between message exchanges as atomic. We took one snapshot of the whole
application after each message exchange, sharing identical pages between snap-
shots to reduce the memory consumption. We compared each snapshot to all

3The MPICH project: http://www.mpich.org
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L. Stateless exploration Stateful exploration
Application # P
# States Time Memory | # States Time Memory
beasttest (C) 3 > 1million > 24h - 4,823 | 25min23s | 1.01GiB
5 12,135,948 1h22min | 0.35GiB 4,734 6min50s 0.84 GiB
beastzerotype (C)
6 > 263 millions > 24h - 56,0564 | 10h02min | 7.16 GiB
4 102,289 44 0.35 GiB 1,556 1min28s 0.49 GiB
commcreatel (C) 5 12,710,034 1h23min | 0.35GiB 8,359 25 min 1.48 GiB
[§ > 274 millions > 24h - 99,235 | 24h55min | 14.18 GiB
2 907 2s 0.35 GiB 81 2s 0.35GiB
3 138,678 43s 0.35 GiB 405 7s 0.36 GiB
dup (C)

4 78,082,843 7h36min | 0.35GiB 2,352 1minl6s 0.62 GiB
5 > 276 millions > 24h - 39,263 7h 06 min 5.83GiB
4 102,289 3ls 0.35 GiB 1,205 44s 0.44 GiB
groupcreate (C) 5 12,710,034 1h22min | 0.35GiB 6,237 11min2ls | 1.21GiB
6 > 272 millions > 24h - 80,878 | 17h35min | 11.47GiB
inplacef (Fortran) 3 > 182 millions > 24h - 2,941 1minl5s | 0.73GiB
3 358 2s 0.35 GiB 94 2s 0.35GiB
op_commutative (C) | 4 102,289 31s 0.35GiB | 1,545 | 1min20s | 0.48GiB
5 12,710,034 1h23min | 0.35GiB | 10,998 53min29s | 1.79GiB
sendrecv2 (C) 2 > 156 millions > 24h - 1,877 30s 0.49 GiB

Table 2: Exhaustive verification of MPI applications from MPICH3 testsuite.

others using the contribution presented in this work, and then searched for
non-progressive cycles (i.e., livelocks) in the resulting graph.

Table 2 compares the performance of the stateless and stateful explorations
of these applications. The DPOR reduction was not activated in these ex-
periments since our current DPOR implementation remains stateless and is
incompatible with the state equality reduction due to technical reasons. We
managed to exhaustively explore the state space of these applications for up to
6 processes (no error has been found during these explorations). These results
clearly demonstrate the necessity of the state reduction to exhaustively explore
the state space of even basic tests with few processes.

4.2. Dynamic verification of liveness properties

This experimentation part is divided into two experiments. We demonstrate
firstly the ability of our tool to detect a liveness violation on a custom MPI
application. Then we study the termination on some programs from the Com-
petition on Software Verification (SV-COMP).

12



4.2.1. Custom Implementation of Centralized Mutual Exclusion

The first experiment uses a custom MPI implementation of the centralized
mutual exclusion algorithm (about 100 lines of code), where a coordinator grants
infinitely often a mutex to the clients that request it. We introduce an error so
that one of the clients never gets the requested critical section (its requests are
discarded). We verify the following liveness property: O(r — Ocs) (any process
that requests (r) must obtain the critical section (cs)). Since one client never
gets the cs, this property is actually violated.

This example is the only case where we had to manually mark a given vari-
able as irrelevant to the comparison (see Section 3.4). We ignored a field in a
data structure returned by MPI. In this specific case, this could probably be
automatized in the future.

A counterexample is accordingly found by our tool. The duration of this
exploration can vary from few seconds if the violation in on the first explored
branch, to several hours if the violation is in another branch. Table 3 presents
the worst case results, when the buggy process is the last one. With such infinite-
time applications, a stateful exploration is mandatory to detect and avoid non-
progressive cycles that could prevent the verification from terminating.

’ # P ‘ # States Time Memory ‘ Depth ‘
3 101 2,55 0.35GiB 94
4 287 3s 0.37 GiB 267
5 960 5,08 0.62 GiB 890
8 68,128 18 min40s 5GiB 62,831
10 > 200,000 >1h > 16 GiB -

Table 3: Verification of the property O(r — {cs) on a bugged mutual exclusion (worse case).

4.2.2. Program Termination of SV Competition

The second experiment for the dynamic verification of liveness properties
focuses on a very specific liveness property: “Always, Eventually, the program
terminates”. As explained in section ?7?, detecting a non-progressive cycle (that
is, a cycle of infinite length composed of a finite amount of states) is enough to
determine that the program will never terminate. Note that a program without
any non-progressive cycle can still fail to terminate, which is consistent with the
fact that the Halting Problem is undecidable.

To study this liveness property, we selected some test cases of the Software
Verification Competition (SV-COMP), which aims at assessing the state of the
art in the field of software verification. The competitors of SV-COMP are
usually based on static analysis, but we wanted to evaluate whether the same
results could be obtained through dynamic analysis. Since our tool considers
the code between MPI communications to be atomic, we had to modify the
proposed benchmarks to add some fake MPI communications to break down
the execution path into separate transitions.
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The Program Termination category of SV-COMP’15 entails 18 test cases
that exhibits a non termination. 14 of these tests present an infinite state space,
for example with an integer variable that is incremented at each step. Even if
static analysis tools can handle such programs, our approach is not effective as
it is not possible to explore explicitly and exhaustively such state space. As a
result, these cases were not included in our evaluation.

The remaining tests are rather simple: two of them (WhileTrue and Madrid)
are infinite loops containing only constant affectations. The third one (Rota-
tion180) permutes three values while alternating their sign. In the fourth one
(NonTerminationSimple5), a variable is randomly either incremented or decre-
mented at each step of an infinite loop.

Our tool manages to find the non-progressive cycle in a matter of seconds
in each of these cases involving only a few states, but for the last program.
NonTerminationSimple5 presents several different infinite execution paths: the
variable can iterate over an infinite amount of values if it is constantly incre-
mented (resp. decremented). The variable can also infinitely loop over only 2
values if it is alternatively incremented and decremented. Our tool detects the
second case when limiting the maximum exploration depth so that the second
branch of the second alternative gets explored (increasing after decreasing, or
the opposite).

Similarly to the 14 tests that were not included in this evaluation, the first
kind of infinite execution path presented by NonTerminationSimple5 entails
an infinite amount of different states. This defeats our approach of dynamic
verification of termination, as it is based on the detection of execution loops
leading to previously evaluated states. This is a clear limitation over the scope
of our verification methodology, somewhat reducing our impact on this use case.
This limitation should be balanced with the versatility of liveness properties that
can be verified, which can be much more complex than the termination property.
In addition, this limitation does not reduce the effectiveness of the state equality
detection presented in this article, that can also be leveraged in the other use
cases and that perfectly works in this evaluation when it is applicable.

4.8. Stateful exhaustive exploration of infinite-time application

The goal of this experiment is to prove the applicability of our approach to
cyclic applications. To that extend, we use a modified version of the centralized
mutual exclusion algorithm used previously. The bug was removed, and the
processes were modified to loops forever, requesting (resp. granting) the critical
section at each step.

We could exhaustively verify this infinite protocol in four minutes for 3
processes (8,216 states found, 1 GiB) and almost 18h for 4 processes (480,997
states found, 49 GiB).

5. Related work

Since this work leverages dynamic analysis techniques, we do not discuss
approaches based on static analysis. These orthogonal approaches could be used
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jointly to benefit both several sources of information during the verification.

Many tools exploit dynamic analysis either for the verification of C pro-
grams [15, 4, 16] with abstract interpretation in some cases and focused on
memory-related errors [17, 18] or in particular for the termination analysis [19,
20]. This approach is also commonly used for Java [12] or object-based program
analysis, with a garbage collection mechanism [21]. As explained in Section 3, it
is easier to implement this approach for languages served by a virtual machine,
as the meta-data known to the virtual machine are precious in this context.
The semantic of any byte of memory is known to the VM, that can in particular
retrieve and follow pointers. This operation is much harder in our case. Our
heuristic must deal with generic pointers, invisible variables, dangling pointers
and otherwise unknown pointers, that cannot happen with a garbage collector.

To the best of our knowledge, our contribution is the first extension of the
heap canonicalization algorithm proposed in [14] to languages without auto-
matic garbage collection. Strictly speaking, this is not a heap canonicalization
algorithm, as it does not change the order of blocks in memory, but it fulfills the
same need for heap semantic comparison. Our approach allows to perform the
verification on the actual program memory without using state vectors. This
direct use of the actual state can reduce the risk of abstraction errors.

This state equality comparison is a major technical lock to the formal verifi-
cation of HPC applications. Although the need of such methods is well acknowl-
edged in this context [22], there exist few verification tools for MPI applications.
To the best of our knowledge, MPI-CHECK [23] is the only verification tool of
Fortran 90 MPI programs. Thanks to compile-time and runtime tests, it de-
tects deadlocks and some inconsistencies in MPI calls such as negative message
lengths. But the exploration is not exhaustive and the achieved tests are lim-
ited. Gauss [24] and MPI-Spin [25] are model extractors for MPI applications
which can then be checked with Zing [26] and SPIN [27] respectively.

Finally, ISP [28] and its distributed counterpart DAMPI [29] are dynamic
verifiers specifically tailored for the verification of MPI applications written in
C. They check for deadlock and local assertion violations without requiring users
to manually model their code. ISP hijacks the PMPI profiling interface that is
normally intended for tracing tools to gather information about the MPI calls.
ISP mediates these MPI calls and performs the dynamic verification at that
level. A distributed protocol is then used between nodes to determine which
messages should be delayed within the ”profiling” call, and which ones can be
proceed (after being rewritten).

This approach leads however to two major drawbacks. First, collective op-
erations are seen as atomic calls from the profiling interface perspective. The
point-to-point communications that compose these collectives are completely
invisible at this level. It means that unlike SimGridMC, ISP cannot properly
verify collective operations, that must be assumed intrinsically correct. This
seems unfortunate given the current momentum on asynchronous group col-
lectives, that are known to be error-prone to implement [22]. Moreover, the
real execution of the application on a real distributed platform may pose subtle
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challenges to ensure that the simulation is reproducible. Likewise, rewriting the
MPI calls may change the synchronization semantic, that may depend on the
buffer sizes in some border cases [30]. SimGridMC is based on the versatile
SimGrid framework instead which is reproducible by design. It is much easier
to observe and control the distributed system when it is folded into a unique
system process, resulting in simpler and thus more robust setups.

6. Conclusion and Future Work

System state equality detection is essential for the dynamic verification of
applications. It is important to verify arbitrary liveness properties, to explore
exhaustively infinite cyclic protocols and constitutes an efficient reduction mech-
anism during stateful explorations. Detecting system state equalities is however
much harder with legacy distributed applications than with abstract models.

In this article, we detailed the root causes of these difficulties, and proposed
various solutions leveraging debugging information and tools. We presented a
heuristic to detect the state equality of an application at system-level. Even if
missing typing information may lead to false negative, this memory introspec-
tion technique is to the best of our knowledge the first solution to reconstruct
semantic information about systems that use programming languages without
automatic garbage collection.

Despite its apparent simplicity, our heuristic proves efficient in practice. It
was evaluated on the dynamic formal verification of several properties on various
test cases from the official MPICH3 testsuite. We were able to actually verify
and exhaustively explore these legacy distributed applications.

This contribution is integrated in the SimGrid framework?*, making it possi-
ble to jointly evaluate the correctness and performance of distributed applica-
tions.

Our approach cannot be used for certification but only for bug finding as it
relies on a heuristic. The improvement beyond prior work on verifying unmod-
ified legacy HPC programs is many-fold: any safety or liveness property can be
verified, and some class of infinite time-applications can be verified. These prop-
erties can be assessed on arbitrary C/C++ or Fortran mono-threaded applica-
tions based on MPI, using only the debugging symbols. This may be applicable
even if the source code is not available.

In the future, we want to combine our approach with other classical meth-
ods to increase the amount of available information during the reduction. For
example, visibility information that can be extracted from instrumentation are
mandatory to combine the DPOR and stateful reductions [31]. Memory graphs
that can be reconstructed from static analysis would help extending the appli-
cability of our approach to multithreaded MPI applications. We also want to
evaluate complex MPI code, such as the asynchronous collective calls imple-
mented in MPICH and OpenMPI or even full MPI applications.

48imGrid is freely available from http://simgrid.org/
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