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1. Introduction 
 
The description of large temporal graphs requires effective methods giving an appropriate            
mesoscopic partition. Many approaches exist today to detect “communities”, ie groups of nodes             
that are densely connected (Fortunato, 2010), in static graphs. However, many networks are             
intrinsically dynamical, and need a dynamic mesoscale description, as interpreting them as static             
networks would cause loss of important information (Holme and Saramaki, 2012; Holme 2015).             
For example, dynamic processes such as the emergence of new scientific disciplines, their             
fusion, split or death need a mesoscopic description of the evolving network of scientific articles. 

There are two straightforward approaches to describe an evolving network using methods            
developed for static networks. The first finds the community structure of the ​aggregated             
network, ie the network found by aggregating the nodes and their links at all times. However,                
this approach discards most temporal information, and may lead to inappropriate descriptions, as             
very different dynamic data can give rise to the identical static graphs (Berger-Wolf and Saia,               
2006). To avoid this problem, the opposite approach closely follows the evolutions and builds              
networks for successive time slices by selecting the relevant nodes and edges. Then, the              
mesoscopic structure of each of these slices is found ​independently and the structures are              
connected in various ways to obtain a temporal description (Berger-Wolf and Saia, 2006; G.              
Palla et al, 2007, Rosvall and Bergstrom, 2010, Chavalarias and Cointet, 2013). By using an               
optimal structural description at each time slice, this method avoids the inertia of the aggregated               
approach. Its main drawback lies in the inherent fuzziness of the communities, which leads to               
“noise” and artificial mesoscopic evolutions, with no counterpart in the real evolutions of the              
data. For example, rather different partitions have a very close modularity (Good et al, 2010),               
and minor changes in the network may lead to quite different partitions in successive time slices,                
which would be inadequately interpreted as major structural changes. 

Several methods have been proposed to overcome the problems of these two extreme             
approaches (Gauvin et al. 2015, Peel and Clauset, 2014, Mucha et al, 2010, Kawadia and               
Sreenivasan 2012). Here, we present a new approach that distinguishes real trends and noise in               
the mesoscopic description of social data using the continuity of social evolutions. To be able to                
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follow the dynamics, we compute partitions for each time slice, but to avoid transients generated               
by noise, we modify the community description at time ​t ​using the structures found at times ​t-1                 
and ​t+1​. We show the relevance of our method on the analysis of a scientific network showing                 
the birth of a new subfield, wavelet analysis. This field represents a difficult test because it has                 
arisen out of the collaboration of several disciplines, producing a rich history, made by many               
entangled streams. 
 

 
Figure 1: Sliding temporal windows 

 

2. Method description 
 
Our method consists in four steps: 

(1) The dataset is first divided into temporal windows of ​w years, translated by ​Δ​t              
years (Figure 1).  

(2) In the second step, community detection is carried out ​independently for each            
window by any method. This leads to a structure that follows as closely as              
possible the real mesoscale dynamics, at the price of some noise. To selectively             
delete the noise, while keeping the real evolutions, one has to split or merge              
communities at each slice, depending on the relations between the successive           
communities on longer time scales.  

(3) For this, the third step systematically computes all the similarities between           
communities at times ​t-2, t-1, t, t+1 ​and t+2​. For each community at time ​t​, we                
keep ​only the most similar communities at times ​t-2 through ​t+2​, thus defining its              
“ancestor” (most similar community at ​t-2​) P​t-2​, “predecessor” (at ​t-1​) P​t-1​,           
“successor” (at ​t+1​) S​t+1​, and “grandchild” (at ​t+2​) S​t+2​. These strong long-term            
links allow to discriminate real evolutions from noise, by taking advantage of the             
relative continuity and stability of social evolutions on appropriate time scales.           
For example, and with regard to the dataset used, a new scientific field does not               
appear and disappear in a single year. 

(4) The fourth (and final) step then uses this long-term information to iteratively            
select all the time windows and optimize the complexity score (Equation 1). For             

2 



this, we ​merge ​communities that appear to be unduly split by the independent             
community detection (Figure 2a), and ​split ​communities that appear to be           
artificial merges (Figure 2c). In practice, we identify artificial merges at time ​t by              
the links between the “predecessor” communities (at ​t-1​) and the “successor” ones            
(at t+1). If these two are linked (as in Figure 2c), then we assume that these two                 
trends represent the real evolution, and the merge at time ​t arises out of noise in                
the community detection. We then split the community, attributing the nodes to            
each of the trends by a simple intersection procedure (for details, see SI, par. 1).               
In any other case, when there are missing links between the communities (as in              
Figure 2d), we assume that a real merge has been detected, which is then followed               
by a split between two different streams. The same procedure is applied to             
distinguish between real and artificial splits (Figure 2a-b). This procedure goes on            
as long as there exists an artificial split or merge. 

(5) At the end of the procedure, we obtain a description of the network evolution at               
the mesoscale, the unit of description being now several streams of connected            
communities. Note, however, that the final description may depend on the set of             
initial partitions. To render our method robust, we compute a “complexity” score            
(Equation 1) for different final descriptions and use the one with the highest score,              
leading to the “richer” story that can be told avoiding noise. The merit of our               
approach is, by eliminating most of the noise, to limit these complex turbulent             
regions to the real transformations that should not be discarded: things should be             
made simple, but not too simple. This score is computed as: 

 
 
Where: 

u = nodes in G 
s​u​ = size of node u 
u​s​ = resulting split nodes in “structural” (real) splits;  
u​m​ = resulting merged node in “structural” (real) merges;  
u​r​ = resulting split nodes in ephemeral (noise) splits; 
u​x​ = resulting merged node in ephemeral (noise) merges. 
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2a - artificial split 

 
2b - real splits 

 
2c - artificial merge 

 
2d - real merges 

 
Figure 2.abcd: Ephemeral (artificial) versus structural (real) events 

 
To visualize the output, we align the communities that belong to the same “laminar              

stream”, defined as a succession of communities that are all connected, by both t+/-1 ​and t+/-2                
links. More formally, a laminar stream LS is defined as an ensemble of communities C​i​ such as: 

 
C​i​∈​LS, P​t-2​(C​i​)​∈​LS, P​t-1​(Ci)​∈​LS, S​t+1​(Ci)​∈​LS, S​t+2​(Ci)​∈​LS 
 
where P​t-1​(C​i​) is the predecessor of C​i ​at ​t-1​, etc. In some sense, the method tries to                 

produce an output which is as close as possible to a collection of laminar flows, i.e. a set of                   
independent stories. However, real systems are generally more complex, with some “turbulent            
regions”, where real splits produce new streams, flows become intermingled and new subfields             
are generated. This turns out to be the case in the real case application we describe below. 

3. Emergence and evolution of a new scientific field: wavelet analysis 
 

We test the method on an evolving network of scientific articles related to the emergence               
of a new field: wavelets analysis. This technique, developed through collaborations among            
mathematicians, physicists and electrical engineers, has been fundamental for signal/image          
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processing, leading for example to the well-known jpeg compression format. Wavelets history is             
interesting as a test case because it is a recently born subfield (seminal paper in 1984), for which                  
robust scientometrics records are available. To define the relevant set of publications, we             
identified 83 key actors of the early developments of the field. The list was established using                
expert advice (one of the authors, PF) and bibliographic searches. We then retrieved all their               
publications (from 1970 to 2012), obtaining 6,500 records from Web of Science. We used              
4-years wide time slices (​w​=4), separated by one year (​Δ​t​=1). For each slice, we first defined a                 
network using the articles as nodes, linked by their common references (bibliographic coupling,             
Kessler 1963, articles sharing less than 2 references are not linked). We then follow the method                
described above, using maximization of modularity for each slice and the Jaccard similarity             
index (Jaccard 1901) to compute the similarities between the successive communities. The final             
result is represented in Figure 3. 
 
 
 

 
 
Figure 3: Overview of the history of wavelets. Streams are labelled according to the subfield               
within wavelets development (see text for details). Zoomable version available at 
http://perso.ens-lyon.fr/matteo.morini/wavelets/flows/disciplines.pdf 
Position of each community: x=year, y=aligned according to streams 
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We can now address two important points:  
(1) What have we learnt about wavelets evolutions using our method?  
(2) Methodological: what do we learn about our method from this example? How important are               
artificial splits/merges, quantitatively and qualitatively, i.e. to understand the history of           
wavelets? 
 

4. Automatic wavelets history 
 

A first idea about wavelets evolutions can be derived from the evolution of modularity              
(Figure 5). Roughly speaking, a high modularity value corresponds to isolated clusters, while             
low values point to highly interconnected networks (see figg. SI.3 and SI.4 for examples of the                
former and the latter, respectively). The analysis shows that there are three main stages. In an                
initial phase (before ~1985), researchers work in different, quite unrelated fields and modularity             
is high (the network of all articles is shown in Figure SI.1). Then, in the 1990s, wavelets appear                  
as a common topic whose use gains momentum, defining a new, specific field that interlinks the                
publications of our set of authors, leading to a minimum in modularity. After this, modularity               
increases again, pointing to a new, softer divergence, as the initial levels are not reached.               
Wavelets become a mature tool, that are less an object of interest ​per se​, serving instead a more                  
ancillary role within specialized communities and paving the way for new avenues of research,              
by developing new tools (as “compressed sensing”) or applying wavelets to specific domains,             
such as Astrophysics images. 

Our approach reveals the major structural flows that define the subfields within wavelets             
development (Figure 3). For each stream, we indicate its name, the main author and the               
initial/ending dates. 

- The stream, “Foundations of wavelets” (1983-2006), starts in 1983 with          
foundational articles by mathematician Alexis Grossmann. Most wavelets        
research streams emerge from it, as “Time-frequency analysis” (Flandrin,         
1989-2009) and “Component separation” (wavelets without orthonormal bases,        
Szu, 1989-2009). Starting from mathematical physics, this streams builds         
wavelets as a rigorous mathematical formalism (80% of its articles are published            
in Mathematics’ journals), but adapted to Engineering concerns.  

- In 1990, a central stream, the stem from which most of the subsequent streams              
will emerge (“Engineering applications”, 1990-2009), is created by the fusion of           
Vetterli’s research with a split of the founding stream. This subfield is less             
concerned by theoretical developments than by practical applications, and most of           
its articles are published in Engineering journals. The stream “Representation”          
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(Unser, 1986-1992) joins it in 1993, leading to a focus on design. The most              
important subfields originating in “Applications” are : 

- “Inverse problems & sparsity in image analysis” (Starck, 1993-2009),         
which after focusing on applications on astrophysics images, deals with          
more general problems in image analysis. It will lead to another important            
stream, “Compressed sensing” (Baraniuk, 2004-2009) 

- “Structural models” (Wilsky, 1994-2009) 
- “Image coding”, building the theoretical foundations of image coding         

(Vetterli, 1998-2006) 
- “data hiding” (Ramchandran, 1998-2009) 

- Note that there are also some “laminar flows”, that interact only peripherally with             
other lines of research, leading to a linear, simple sequence of communities.            
Examples of these relatively independent lines of research are the group lead by             
Alain Arneodo (“Multifractal”, 1985-2009), “Frames” (Grochenig, 2000-2009),       
“Video quality” (Bovik, 1999-2009). These laminar flows represent subfields that          
apply wavelets to specific objects, without contributing much to the          
methodological developments. 

 
Finally, it is instructive to look for the position of Yves Meyer, the 2017 prestigious Abel prize                 
for “his pivotal role in the development of the mathematical theory of wavelets”. As the number                
of his publications is not very high, he does not appear explicitly as the main author of any                  
stream. However, his publications are highly cited in the stream “foundations of wavelets”,             
revealing his importance for the mathematical developments. His “pivotal role” of connecting            
ideas and people, notably in conferences, cannot be seen in our network only made from               
publications. 
 

5. Test of the method 
 
Overall, our method has lead to the split (12) and merge (12) of 24 communities, representing                
~10% of all the articles in the database. An example of an important artificial merge occurring in                 
1994 and detected by our method, similar to the one sketched in Figure 2c, is given in Figure 4;                   
the network structure is detailed in Figure SI.2. Even if it is clear, looking at the overall history,                  
that there existed two distinct streams of research for 20 years, the independent initial partition               
merged the communities from these two trends in 1994. Since there exist links (i.e. shared               
references) among the articles of the two communities (see the articles’ network in Figure SI.1),               
there is a significant probability that an independent partition algorithm will gather them in a               
single community. Our method allows to avoid this artificial merge of two distinct streams of               
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research, which belong to different disciplinary traditions, as one subfield is focused on             
Mathematics, while the other privileges Engineering.  

More generally, Figure 5 shows that the rearrangements of partitions demanded by the             
maintenance of the streams flows leads to negligible losses in the quality of the instantaneous               
partitions as quantified by modularity. This is important, as it shows that we maintain a close                
adaptation to the temporal variations, while choosing the partition that best fits the overall              
evolution. 
 

                          
 
Figure 4: Detail of 1994 split. From left to right, the unduly merged communities are split and                 
assigned to their respective streams. 
 
 

 
 
Figure 5: Modularity evolution in time, compared before and after filtering 
 
There is a clear minimum in modularity for year 1991, pointing to a homogeneous network               
without much structure, which results from the effective mixing of different disciplinary            
traditions around the new object (wavelets). 
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6. Comparison to other methods 
 
Our approach offers decisive advantages over existing methods:  

- It handles naturally networks in which nodes appear or disappear at each time             
step, which is impossible or cumbersome for other methods.  

- Contrary to generative models (Jacobs and Clauset 2004; Peixoto and Rosvall           
2016, Xu, Kliger and Hero 2014), we do not need to define an ​a priori network                
community structure (for example, a block model) which may be unadapted to the             
data. 

- Claveau and Gingras (2016) have studied the history of economics using           
scientometrics data and an approach quite similar to ours. However, to determine            
the partition at time ​t​, they initialize the Louvain algorithm with the partition             
obtained for the preceding time step. Their approach is therefore limited to            
partitioning by this algorithm. Moreover, the authors do not justify why their            
approach represents a sound way of adding some inertia to real-time partitioning.  

 

7. Concluding remarks and future work 
 
To make sense of transformations, we need evolving categories that can, at the same              

time, readily adapt to the changes and maintain the continuity of the description. Our method               
starts from the idea that the unity of an evolving social process rests on the continuity of its                  
transformations, and uses the available mid-term temporal information to reveal structural trends            
from noisy data, without the assumption of an ​a priori community structure. It can be adapted to                 
any partitioning method and to any similarity measure between communities at different times.             
Used on scientific data, our method automatically produces a rich historical account, an objective              
raw material to be discussed by science historians. 

There is much room for improvement. The relevant time scales (​w​, delta t) have to be                
chosen from expert knowledge, and we cannot deal with real-time data, as we use the future to                 
infer the best present partition. We now work to introduce, through a hidden Markov model, an                
explicit meso temporal scale at which transformations (splits/merges) are supposed to happen for             
a pair of streams. 
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Supplementary information 
 

1. Re-splitting unduly merged communities 
   

Occasionally, and because of the inherently noisy community detection process, groups of nodes (articles)              
of a time window can be assigned to either two distinct communities or a single, larger community. When                  
we weigh in the additional temporal information from ​t-1 and ​t+1​, and observe that the ambiguity can be                  
resolved, for example when two consistently distinct streams have been merged for a single step. We then                 
assume that the unduly merged communities have to be split back. In order to preserve continuity, each                 
article belonging to the wrongly merged community C​0 is assigned to one of two new communities, C​01​,                 
C​02​. We define two sets of articles, U​a and U​b​, one for each of the two streams, S​a and S​b​, which                     
correspond to the union of nodes appearing within each couple of predecessor/successor: P​a,t-1 and P​a,t+1​,               
and P​b,t-1 and P​b,t+1 respectively. Nodes from C​0 which belong to the set U​a are assigned to C​01​; similarly,                   
nodes belonging to U​b end up into C​02​. Because of the fuzziness of communities, a node can appear both                   
in P​a,t-1 and P​b,t+1​; in this case, we assign it to the stream to which it is connected more strongly (or                     
randomly if both weights are equal). 
 
 

2. Network structure examples, colors according to community 
 

 
Figure SI.1, full articles network 
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Figure SI.2, year 1994: artificial (ephemeral) merge happens on a group of nodes (see main               
text) 
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Figure SI.3, articles network, time window 1994-1997 
 
 

 
Figure SI.4, full articles network, up to 1982 
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