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Abstract This paper revisits, in a multi-thread context, the so-called mul-
tiparameter or block conjugate gradient (BCG) methods, first proposed as
sequential algorithms by O’Leary and Brezinski, for the solution of the linear
system Ax = b, for an n-dimensional symmetric positive definite matrix A. In-
stead of the scalar parameters of the classical CG algorithm, which minimizes
a scalar functional at each iteration, multiple descent and conjugate direc-
tions are updated simultaneously. Implementation involves the use of multiple
threads and the algorithm is referred to as cooperative CG (CCG) in order to
emphasize that each thread now uses information that comes from the other
threads. It is shown that for a sufficiently large matrix dimension n, the use
of an optimal number of threads results in a worst case flop count of O(n7/3)
in exact arithmetic. Numerical experiments on a multicore, multi-thread com-
puter, for synthetic and real matrices, illustrate the theoretical results.
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1 Introduction

The appearance of multi-core processors has motivated much recent interest
in multi-thread computation, in which each thread is assigned some part of
a larger computation and executes concurrently with other threads, each on
its own core. All threads, however, have relatively fast access to a common
memory, which is the source and destination of all data manipulated by the
thread.

With the availability of ever larger on-chip memory and multicore proces-
sors that allow multi-thread programming, it is now possible to propose a new
paradigm in which each thread, with access to a common memory, computes
its own estimate of the solution to the whole problem (i.e., decomposition
of the problem into subproblems is avoided) and the threads exchange infor-
mation amongst themselves, this being the cooperative step. The design of a
cooperative algorithm has the objective of ensuring that exchanged informa-
tion is used by the threads in such a way as to reduce overall convergence
time.

The idea of information exchange between two iterative processes was in-
troduced into numerical linear algebra, in the context of linear systems, long
before the advent of multicore processors by Brezinski [10] under the name of
hybrid procedures, defined as (we quote) “a combination of two arbitrary ap-
proximate solutions with coefficients summing up to one...(so that) the com-
bination only depends on one parameter whose value is chosen in order to
minimize the Euclidean norm of the residual vector obtained by the hybrid
procedure... The two approximate solutions which are combined in a hybrid
procedure are usually obtained by two iterative methods”. The objective of
minimizing the residue is to accelerate convergence of the overall hybrid pro-
cedure (also see [2,9]). This idea was generalized and discussed in the context
of distributed asynchronous computation in [6]. It is also worthy of note that
the paradigm of cooperation between threads, thought of as an independent
agents, in order to achieve some common objective, is also becoming popular
in many areas such as control [18,22,21].

Several iterative methods to solve the linear algebraic equation

Ax = b (1)

where A ∈ R
n×n is symmetric positive definite and n is large, are well known.

Solving (1) is equivalent to finding the minimizer of the strictly convex scalar
function

f(x) =
1

2
xTAx − bTx (2)
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since the unique minimizer of f is x∗ = A−1b.

Conjugate direction methods, based on minimization of (2), can be re-
garded as being intermediate between the method of steepest descent and
Newton’s method. They are motivated by the desire to accelerate the typ-
ically slow convergence associated with steepest descent while avoiding the
information requirements associated with the evaluation and inversion of the
Hessian [19, chap. 9].

The conjugate gradient algorithm (CG) is the most popular conjugate di-
rection method. It was developed by Hestenes and Stiefel [17]. The algorithm
minimizes the scalar function f(x) along conjugate directions searched at each
iteration; the convergence of the sequence of points xk to the solution point x∗

is produced after at most n iterations in exact arithmetic. The residual vector
is defined as

rk = Axk − b (3)

and, given (2), clearly rk = ∇f(xk). In the CG algorithm, the residual vector
rk and a direction vector dk are calculated at the kth iteration,for every k.

O’Leary [23] developed a block CG method (B-CG) in which the conjugate
directions and the residues are taken as columns of n × p matrices. The B-
CG algorithm was designed to handle multiple right-hand sides which form
a matrix B ∈ R

n×p, but it is also capable of accelerating the convergence of
linear systems with a single right-hand side, for example for solving systems
in which several eigenvalues are widely separated from the others. Several
properties observed by the vectors in the CG algorithm continue to be valid for
the matrices used in the B-CG algorithm, e.g. the conjugacy property between
the matrix directions. Also, in exact arithmetic, the convergence of the B-CG
algorithm to the solution matrix X∗ occurs after at most ⌈n

p ⌉ iterations, which

may involve less work than applying the CG algorithm p times. Gutknecht [16]
also analyzes block methods based on Krylov subspaces with multiple right
hand sides.

Brezinski ([8, sec. 4] and [3]) developed a block CG algorithm called “multi-
parameter CG” (MPCG), which is essentially the B-CG with a single right-
hand side b and a single initial point x0. The authors of [8,3] build on the
pioneering work of [23], and provide some additional properties, particularly
about its convergence. It should be noted that the B-CG algorithm as well as
the MPCG algorithm were proposed in the context of a single processor, so
issues of multiprocessor implementation, speed up and flop counts were not
considered in [23,8,3].

This paper revisits Brezinski’s MPCG algorithm from a multi-thread per-
spective, calling it, in order to emphasize the new context, the Cooperative
Conjugate Gradient (CCG) algorithm. The cooperation between threads re-
sides in the fact that each thread now uses information that comes from the
other threads, and, in addition, the descent and conjugate directions are up-
dated simultaneously. The multi-thread implementation of the CCG algorithm
aims to accelerate the time to convergence with respect to the B-CG and the
MPCG algorithms. Preliminary versions of this paper are [5,4].
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In [13,14], Gu, Liu et al present a multithread CG method named “multi-
ple search direction conjugate gradient method” (MSD-CG), and its precondi-
tioned version (PMSD-CG). The method is midway between the CG method
and the Block Jacobi method. It is based on a notion of subdomains or par-
titioning of the unknowns. In each iteration there is one search direction per
subdomain that is zero in the vector elements that are associated with other
subdomains [13, p. 1134]. The algorithm can be executed in parallel by a mul-
ticore processor. The problem is divided into smaller blocks, thus dividing the
direction vectors and the residual vectors into smaller vectors to be calculated
by each processor separately.

This paper is organized as follows. In section 2 the conjugate gradient
algorithm, as well as some basic properties of the conjugate directions are pre-
sented. In section 3 the cooperative conjugate gradient algorithm in a multi-
thread context is presented. Their basic properties and the convergence rate
are studied. In section 4, the computational complexity of the CCG algorithm,
as well as the classic CG, the MPCG, and the MSD-CG are investigated. In
section 5 experimental results are presented. In section 6 some general conclu-
sions are mentioned. Finally, an appendix presents the proofs of theorems and
lemmas.

2 Preliminaries on the classical CG algorithm

This section recalls basic results on the classical CG algorithm in order to
motivate the presentation of the corresponding results for the cooperative CG
algorithm. The reader is referred to [19,15] for all proofs and further details
on the CG algorithm.

Definition 1 Given a symmetric positive definite matrix A, two nonzero vec-
tors d1 and d2 are said to be A-orthogonal, or A-conjugate, if dT

1Ad2 = 0.

Lemma 1 If a set of nonzero vectors {d0, . . . ,dk} are A-conjugate (with res-
pect to a positive definite matrix A), then these vectors are linearly indepen-
dent. The solution x∗ ∈ R

n of the system Ax = b can be expressed as a linear
combination of n A-conjugate vectors {d0, . . . ,dn−1}.

x∗ = α0d0 + · · · + αn−1dn−1

where αi =
d

T
i b

dT
i
Adi

for all i ∈ {0, . . . , n − 1}.

Theorem 1 Let {d0, . . . ,dn−1} be a set of n A-conjugate nonzero vectors.
For any x0 ∈ R

n, the sequence generated according to

xk+1 = xk + αkdk (4)

with

αk = − rT

kdk

dT

kAdk
(5)

where rk = ∇f(xk) = Axk − b, converges to the unique solution of Ax = b,
x∗ after n steps, that is xn = x∗.
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It is notable that the choice (5) ensures the convergence of the sequence (4) in
at most n steps in exact arithmetic, which is known as the finite termination
property. However, one of the most interesting and still partially understood
property of the CG algorithm is that, even when implemented in finite preci-
sion arithmetic, approximate convergence to standard tolerances occurs much
faster than n iterations [20]. Nevertheless, we will use this “worst case” esti-
mate of time to convergence in order to generate flop count estimates of the
CCG algorithm in section 4. Another fundamental result, the CCG analog
of which is presented as Theorem 4 below, is called the expanding subspace
theorem [19].

Theorem 2 Let Bk the space spanned by the set of nonzero conjugate vectors
{d0, . . . ,dk−1}. The point xk calculated by the sequence (4) with the step sizes
(5) is the global minimizer of f(x) on the subspace x0 + Bk. Moreover, the
residual vector rk = ∇f(xk) = Axk − b is orthogonal to Bk.

2.1 The Conjugate Gradient algorithm

The Conjugate Gradient method, developed by Hestenes and Stiefel [17],
is the particular method of conjugate directions obtained when construct-
ing the conjugate directions by Gram-Schmidt orthogonalization, achieved at
step k + 1 on the set of the gradients {r0, . . . , rk}. A key point here is that
this construction can be carried out iteratively. The conjugate gradient al-
gorithm is based on the minimization at each iteration of the scalar func-
tion f(x) on conjugate directions which form a basis of the Krylov subspace
Kk(A, r0) := span{r0, Ar0, A2r0, . . . ,A

k−1r0}.
The algorithm is described as follows. Starting from any x0 ∈ R

n, and
choosing d0 = r0 = Ax0 − b, at each iteration, calculate:

xk+1 = xk + αkdk (6)

αk = − rT

kdk

dT

kAdk
(7)

dk+1 = rk+1 + βkdk (8)

βk = −
rT

k+1Adk

dT

kAdk
(9)

In order to qualify as a conjugate gradient algorithm, the directions dk gene-
rated at each step should be A-conjugate, which is confirmed in the following
theorem.

Theorem 3 (Conjugate Gradient Theorem) The conjugate gradient al-
gorithm (6)-(9) is a conjugate direction method. If it does not terminate at the
step k, then:

1. span{r0,Ar0, . . . ;A
kr0} = span{r0; . . . ; rk} = span{d0, . . . ,dk}. These

subspaces have dimension k + 1.
2. dT

kAdi = 0, ∀i < k.
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3. rT

kri = 0, ∀i < k.
4. the point xk+1 is the minimizer of f(x) on the affine subspace x0+span{d0; . . . ;dk}
5. αk =

r
T
krk

dT
k
Adk

.

6. βk =
r

T
k+1rk+1

rT
k
rk

.

For a proof of this theorem as well as further details on the contents of this
section, see [19, chap. 9] and [15, chap. 14].

When the residue vector is zero, the optimum has been attained, show-
ing that CG terminates in finite time, in exact arithmetic. Some other results
about the convergence of the algorithm (6)-(9) can be found in [7]. Interest-
ing properties, both as an algorithm in exact arithmetic and as one in finite
precision arithmetic can be found in [20,12].

3 The Cooperative Conjugate Gradient method

Note that the conjugate gradient method is not parallelizable, because calcu-
lation of the new direction dk+1 requires the new residue rk+1 to have been
calculated first.

However, if we suppose that p initial conditions are used, then we may ask
if it is possible to initiate p CG-like computations in parallel and, in addition,
share information amongst the p processors carrying out these computations in
such a way that there is an overall reduction in time of convergence? We shall
refer to the p processors as threads, in order that the cooperative computation
paradigm that we introduce below have a natural interpretation as a multi-
thread cooperative algorithm.

The extension of the method (6)-(9) using p threads is defined using the
following matrices:

1. X := [x1 x2 · · ·xp] ∈ R
n×p is the matrix of solution estimates, in which

the ith column is assigned to the ith thread.
2. R := [r1 r2 · · · rp] ∈ R

n×p is the matrix of the corresponding residues,
such that ri = Axi − b, ∀i ∈ {1, . . . , p}.

3. D := [d1 d2 · · ·dp] ∈ R
n×p is the matrix of the corresponding descent

directions.

From an initial matrix X0, with residue R0 = AX0−b1T

p, and initial directions
chosen as D0 = R0, at each step calculate:

Xk+1 = Xk + DkαT

k (10)

Dk+1 = Rk+1 + DkβT

k (11)

where,

αk = −RT

kDk(DT

kADk)−1 ∈ R
p×p (12)

βk = −RT

k+1ADk(DT

kADk)−1 ∈ R
p×p (13)
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until a stopping criterion (for example ‖ri‖ smaller than a given tolerance for
some i ∈ {1, . . . , p}) is met. In the following, we shall assume that Dk is a
full column rank matrix for all iterations k. Note that if p = 1, the method
(10)-(13) coincides with (6)-(9).

Remark 1
(a) O’Leary [23] considers a block-CG solver which treats multiple right hand

sides at once (B 6= b1T

p). Brezinski ([8, sec. 04] and [3]) considers only one
thread x and the initial matrix R0 = D0 is a particular partition of the
initial residue such that R01p = r0 = Ax0 − b.

(b) In section 3.2, the case where p does not necessarily divide n and the
case where rank degeneracy may occur are both analysed: neither case is
considered in [8,3].

(c) A preconditioned version of a multiparameter CG algorithm (MPCG) was
presented in [11] which proposes a matrix version of the Gram-Schmidt
process to find the conjugate direction matrices. However, this procedure
is very expensive in computational terms. A preconditioned version of the
CCG algorithm is not studied here, and will be the object of future research.
It is expected that the advantages obtained by preconditioning the classical
CG algorithm will also hold for the CCG algorithm.

3.1 Properties of the cooperative conjugate gradient method

All the relevant results on the CCG algorithm are collected in this subsection
and the next subsection, while the proofs of the key properties are in an
appendix, in order for this paper to be complete and self-contained. Lemmas
6, 7 and theorems 5, 6 are new, to the best of our knowledge.

In order to present CCG properties that are analogous to those presented
in section 2.1, some notation is introduced. For any set of vectors ri ∈ R

n, i ∈
{0, . . . , k}, we denote respectively {ri}k

0 and [ri]
k
0 the set of these vectors and

the matrix obtained by their concatenation: [ri]
k
0 = [r0r1 · · · rk] ∈ R

n×(k+1).
The notation span [ri]

k
0 will denote the subspace of linear combination of the

columns of the matrix [ri]
k
0 . When R

n is the ambient vector space, we have

span [ri]
k
0 =

{

v ∈ R
n | ∃γ ∈ R

k+1, v =

k
∑

i=0

γiri = [ri]
k
0γ

}

Similarly, for matrices Ri ∈ R
n×p, i ∈ {0, . . . , k}, we introduce the notations

{Ri}k
0 and [Ri]

k
0 , which denote, respectively, the set of these matrices and

the matrix obtained as concatenation of the matrices R0,R1, . . . ,Rk, that
is [Ri]

k
0 = [R0 R1 · · · Rk] ∈ R

n×p(k+1). Also, we write span [Ri]
k
0 for the

subspace obtained by all possible linear combinations of the columns of [Ri]
k
0 :

span [Ri]
k
0 =

{

v ∈ R
n | ∃γ ∈ R

(k+1)p, v = [Ri]
k
0γ
}
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Definition 2 Two matrices Q1 and Q2 are called orthogonal if QT

1Q2 = 0,
and they are called A-conjugate, or simply conjugate with respect to a matrix
A if QT

1AQ2 = 0.

To prove the properties of the algorithm (10)-(13) we first substitute the equa-
tion (11) with step size (13) by the direction matrices generated by the Gram-
Schmidt process, defined as follows.

The Gram-Schmidt process generates conjugate directions sequentially [15,
p. 389]. It can be extended to work with matrices, where every column of a
matrix generated by the process in a step is conjugate with respect to every
column of the matrices generated in the former steps, in the following way:

Dk+1 = Rk+1 −
k
∑

j=0

Dj(D
T

jADj)
−1DT

jARk+1, D0 = R0 (14)

To iterate using (14), it is assumed that all the matrices generated at each
iteration have full column rank (so DT

jADj is nonsingular). It is easy to see
that (14) generates matrices such that DT

jADi = 0 for all i, j ∈ {0, . . . , k+1},
i 6= j. As in the classical case, iteration (14) is expensive in computational
terms.

Theorem 4 Let the direction matrices D0, . . . ,Dk be conjugate and of full
column rank. The columns of Xk calculated as in (10), using the step size
(12), minimize f(xik

), ∀i ∈ {1, . . . , p} on the affine set xi0 + span [Dj ]
k−1
0 .

Moreover, the columns of Rk are orthogonal to span [Dj ]
k−1
0 , which means

that RT

kDj = 0, ∀j < k.

The next lemma is easy to prove, by induction using (10)-(13), and the fact
that Rk+1 = AXk+1 − b1T

p = Rk + ADkαT

k.

Lemma 2 Suppose that D0 = R0, then:

span [R0 R1 · · ·Rk] = span [R0 AR0 · · ·AkR0] = span [D0 D1 · · ·Dk] (15)

Gutknecht [16, sec. 8] defines block-Krylov subspace generated by matrices
A ∈ R

n×n and R0 ∈ R
n×p as

K2

k (A,R0) :=

{

X ∈ R
n×p | ∃γ0, · · · , γk ∈ R

p×p, X =

k−1
∑

i=0

AiR0γi

}

and a block-Krylov subspace method as an iterative method which generates
matrices belonging to a block-Krylov subspace Xk ∈ X0 +K2

k (A,R0), at each
iteration.

According to these definitions the method (10) with step size (12) is a
block-Krylov subspace method. Note, however, that the spaces defined in (15)
are not block-Krylov subspaces.

Lemma 3 The matrices generated by (14) are the same as those generated by
(11) with step size (13).



Cooperative conjugate gradient method 9

The following useful lemmas are proved in [23,8,3].

Lemma 4 (Orthogonality properties)

RT

kADk = DT

kADk (16)

RT

kRk = RT

kDk (17)

Lemma 5 (Formulas for matrix step sizes)

αT

k = −(DT

kADk)−1RT

kRk (18)

βT

k = −(RT

kRk)−1RT

k+1Rk+1 (19)

Theorem 4, and lemmas 2 and 3 indicate that, as long as the residue matrix
Rk is full rank, the algorithm CCG behaves essentially as does CG, providing
p different estimates at iteration k, each of them being optimal in an affine set
constructed from one of the p initial conditions and the common vector space
obtained from the columns of the direction matrices Di, i ∈ {0, . . . , k−1}. This
vector space, span [Di]

k
0 , has dimension (k + 1)p: each iteration involves the

cancellation of p directions. Notice that different columns of the matrices Dk

are not necessarily A-orthogonal (in other words, DT

kADk is not necessarily
diagonal), but, when Rk is full rank, they constitute a set of p independent
vectors. The statements as well as the proofs of these theorems and lemmas
(all in the appendix) have been inspired by the corresponding ones for the
conventional CG algorithm given in [19, p. 270] and [15, pp. 390-391].

3.2 Convergence of the cooperative conjugate gradient method

To prove the convergence of the algorithm (10)-(13), first consider the case in
which, if rank Dk = p, then rank Dk+1 = p, at least until Dk+1 = Rk+1 = 0,
in which case the algorithm, in exact arithmetic, terminates.

Lemma 6 If rank D0 = p and the algorithm (10)-(13) does not terminate at
the iteration k, which implies that Rk and Dk are different from zero, then
rank [Di]

k−1
0 = pk ≤ n, which means that, before convergence, all the column

vectors are linearly independent.

Remark 2 If rank [Di]
k
0 = n < p(k + 1), then DT

kADℓ 6= 0, ∀ℓ < k, which
implies that the conjugacy property is no longer satisfied. In fact, only the
n− pk first columns of the matrix Dk continue to be conjugate to the former
matrices, that is DT

ℓA[dik
]n−pk
1 = 0, ∀ℓ < k.

The same happens with the matrix Rk, where RT

kDℓ 6= 0, ∀ℓ < k, only
the first n − pk columns continue to be orthogonal to span [Di]

k−1
0 , that is

DT

ℓ[rik
]n−pk
1 = 0, ∀ℓ < k.

The following theorem affirms that, in the iteration that follows the satisfaction
of this condition (i.e., iteration k + 1 such that p(k + 1) > n), convergence to
the solution occurs. We first consider the simpler case where p divides n.
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Theorem 5 If rank R0 = p, then all of the threads in the cooperative conju-
gate gradient method (10)-(13) converge to the solution x∗ in at most k∗ = n

p
iterations, which means that Rk∗ = Dk∗ = 0 and Xk∗ = x∗1T

p.

Note that lemma 6 indicates that if each matrix Di generated at each iteration
has a rank p, then all the columns of [D0 · · ·Dk] are linearly independent.
Unfortunately, even if all columns of the matrices Rk+1 and Dk are linearly
independent, this does not guarantee that the columns of Dk+1, calculated by
(11), also has linearly independent columns.

When the columns of Dk are linearly dependent, it is enough to eliminate
columns (threads) in such a way that Dk continues to have full column rank,
choosing any full-rank subset of columns (so that DT

kADk continues to be
nonsingular). The linear dependence of the columns of Dk is known as rank
degeneracy (or deflation, which is the term used in [16, sec. 8]). Note that the
term rank degeneracy includes the case when p does not divide n and thus
pk∗ > n, as pointed out in remark 2.

O’Leary also considers the possibility of “deleting the zero or redundant
column j of Dk and the corresponding columns of Xk and Rk, and continuing
the algorithm with p − 1 vectors... The resulting sequences retain all of the
properties necessary to guarantee convergence” [23, p. 301].

In order to consider the case where rank degeneracy occurs, denote as pk

the number of threads such that rank Dk = pk. We assume p0 = p, and thus
pk ≤ p for all k > 0.

Note that the best case is pk = p for all k > 0 until convergence occurs
(there is no rank degeneracy). The worst case is pk = 1, ∀k > 0 until conver-
gence occurs.

Lemma 7 There exists a finite natural number k∗ such that

min
k∗∈N

rank [Di]
k∗

−1
0 = n

The following theorem states conditions for convergence of the CCG algorithm
in the general case where rank degeneracy may occur.

Theorem 6 If rank R0 = p > 1, all the threads that converge in the conjugate
gradient method (10)-(13) converge to x∗ in ⌈n

p ⌉ ≤ k∗ ≤ n − p + 1 iterations,

i.e. xik∗ = x∗ and rik∗ = dik∗ = 0 for all i ∈ {1, . . . , pk∗−1}.

The proof of this theorem is similar to that of theorem 5 for all the threads
that are not eliminated at any iteration by rank degeneracy, i.e. xik

, ∀i ∈
{1, . . . , pk∗−1}. Note that, although rank degeneracy may occur, for all i, j ∈
{0, . . . , k∗ − 1}, i 6= j, Di ∈ R

n×pi , Dj ∈ R
n×pj , the conjugacy property

DT

iADj = 0 ∈ R
pi×pj continues to be valid, as well as the orthogonality

property RT

iDj = 0 ∈ R
pi×pj , ∀j < i.

The following lemma, proved in [3, property 11] and [23, theorem 5], gives
the rate of convergence of the CCG algorithm.
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Table 1 Example of the execution of the CCG algorithm with a randomly generated matrix
A ∈ R

50×50 from initial conditions that are the columns of a randomly generated matrix
X0 ∈ R

50×6, which implies the use of p = 6 threads. The right hand side b is also random.
The norm of the residual vector of each thread and the rank of the matrices [Dk] and [Di]k0
at each iteration k are reported.

k rank [Dk] rank [Di]
k
0 ‖r1k

‖ ‖r2k
‖ ‖r3k

‖ ‖r4k
‖ ‖r5k

‖ ‖r6k
‖

0 6 6 3.80 105 4.16 105 3.83 105 3.44 105 3.82 105 3.08 105

1 6 12 1.04 105 0.88 105 1.11 105 1.09 105 0.97 105 0.93 105

2 6 18 4.43 104 4.19 104 4.18 104 3.04 104 3.98 104 4.44 104

3 6 24 1.28 104 2.02 104 2.15 104 1.78 104 1.85 104 2.39 104

4 6 30 5.94 103 8.69 103 7.48 103 12.52 103 14.48 103 10.80 103

5 6 36 3.18 103 3.11 103 4.04 103 5.57 103 6.00 103 4.60 103

6 6 42 1.50 103 2.96 103 3.31 103 3.60 103 2.70 103 4.42 103

7 6 48 1.16 103 4.08 103 3.56 103 4.41 103 2.42 103 5.58 103

8 6 50 252.87 227.31 293.49 250.26 641.00 363.04

9 6 50 1.09 10−4 1.13 10−4 1.43 10−4 1.36 10−4 2.67 10−4 0.45 10−4

Lemma 8 Let κ = λn/λ1 be the condition number of A:

‖xipk
− x∗‖A =

2√
λ1

p
∑

i=1

‖ri0‖
(√

κ − 1√
κ + 1

)k

(20)

Next, we present an example of the execution of the CCG algorithm for a
dense randomly generated matrix and using six threads. In this example, no
rank degeneracy occurs, so that the columns of the matrix [Di]

k
0 are linearly

independent until the iteration k∗.

Example 1 Let A ∈ R
50×50 be a randomly generated symmetric positive def-

inite matrix, b 6= 0 ∈ R
50, and 6 initial conditions X0 ∈ R

50×6 are also
randomly chosen; thus we have p = 6 threads. Table 1 reports the rank of the
matrices [Dk] and [Di]

k
0 and the norm of the residual vector of every thread at

each iteration k. Note that in this example the direction vectors are linearly
independent ([Di]

k
0 has full column rank and hence no rank degeneracy oc-

curs). The convergence is produced at an iteration k∗ = 9, where the norm of
the residual vectors are lower than 10−3.

Brezinski [3, p. 12] affirms that, when pk∗ > n, rank degeneracy always occurs
in the last iteration, then a “breakdown occurs ... and no general conclusion
can be deduced”. In fact, Algorithm 1 shows pseudocode for the cooperative
conjugate gradient algorithm in the case when rank degeneracy may occur. In
algorithm 1, X|j∈J refers to the matrix X from which the columns specified
in the set J have been removed.

4 Estimates of operation counts and speedup of the CCG algorithm

This section estimates the operation counts and speedup of the CCG algo-
rithm, when using the CCG algorithm with p threads, instead of CG and
MPCG algorithms. The expected speedup is due to the parallelism inherent
in a multi-thread implementation. In order to calculate these estimates for
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Algorithm 1 Pseudocode for the cooperative conjugate gradient algorithm,
where X|j∈J refers to the matrix X from which the columns specified in the
set J have been removed.
1: Choose X0 ∈ R

n×p

2: R0 := AX0 − bT1p

3: D0 := R0

4: p−1 := p
5: p0 := rank R0 ⊲ p0 is the initial value of the rank
6: k := 0
7: while pk > 0, do

8: if pk < pk−1 then ⊲ pk−1 − pk threads are suppressed
9: choose J ⊂ {1, ., pk−1} such that Dk |j∈J ∈ R

n×pk and rank Dk |j∈J = pk

10: Xk ← Xk |j∈J ⊲ Xk ∈ R
n×pk

11: Rk ← Rk|j∈J ⊲ Rk ∈ R
n×pk

12: Dk ← Dk |j∈J ⊲ Dk ∈ R
n×pk

13: end if

14: αk := −RT

k
Dk(DT

k
ADk)−1 ⊲ αk ∈ R

pk×pk

15: Xk+1 := Xk + DkαT

k
⊲ Xk+1 ∈ R

n×pk

16: Rk+1 := Rk + ADkαT

k
⊲ Rk+1 ∈ R

n×pk

17: βk := −RT
k+1ADk(DT

k
ADk)−1 ⊲ βk ∈ R

pk×pk

18: Dk+1 := Rk+1 + DkβT

k ⊲ Dk+1 ∈ R
n×pk

19: pk+1 := rank Dk+1

20: k ← k + 1
21: end while

the cooperative conjugate gradient algorithm (10)-(13), we make the following
assumptions:

1. the computations are carried out in exact arithmetic;
2. the only floating point operations that are counted are multiplication and

division and both operations take the same amount of time;
3. the worst case of finite termination in ⌈n

p ⌉ steps occurs, where n is the
dimension of the matrix A;

4. all threads are computationally identical: i.e., all floating point operations
are executed in the same amount of time on each thread,

5. rank degeneracy does not occur, i.e. pk = p for all k ∈ {0, . . . , k∗ − 1}.
Rewriting equations (10)-(13) to make the calculations in (10), (11) explicit, we
assume that each iteration of the algorithm requires calculating the following
recursions:

Xk+1 = Xk − Dk(RT

kDk(DT

kADk)−1)T

Rk+1 = Rk − ADk(RT

kDk(DT

kADk)−1)T

Dk+1 = Rk+1 − Dk(RT

k+1ADk(DT

kADk)−1)T

(21)

Table 2, based on the iteration defined in (21), shows the number of floating
point operations realized per iteration by each processor in a multi-thread
implementation. Total computation time can be assumed to be proportional
to the total number of floating point operations required to satisfy the stopping
criterion, neglecting the time spent on communication.

In Table 2, the first column indicates the task carried out at each stage
by every thread. The double lines, separating the first row from the second
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Table 2 Operations and corresponding number of floating point operations in the iteration
k executed by each processor in a multi-thread implementation

operation result (b) dimension products additions divisions

of proc. i (a) of the result

Adi AD n × p n2 n(n − 1) 0

d
T
i
AD D

T
AD p × p np p(n − 1) 0

r
T
i
D R

T
D p × p np p(n − 1) 0

αi | αi(D
T
AD) = r

T
i
D α := R

T
D(DT

AD)−1 p × p
p(p+1)(2p+1)

6
− p

p(p+1)
2

(c)

ri := ri − ADαT
i

R := R − ADαT n × p np np 0

xi := xi − DαT
i

X := X − DαT n × p np np 0

r
T
i
AD R

T
AD p × p np p(n − 1) 0

βi | βi(D
T
AD) = r

T
i
AD β := R

T
AD(DT

AD)−1 p × p
p(p+1)(2p+1)

6
− p

p(p+1)
2

(c)

di := ri − DβT
i

D := R − DβT n × p np np 0

total number of products per iteration n2 + 6np +
p(p+1)(2p+1)

3
− 2p

total number of additions per iteration n2 − n + 6np +
p(p+1)(2p+1)

3
− 5p

total number of divisions per iteration p(p + 1)
(a) Operation realized by the ith thread, for all i ∈ {1, . . . , p}
(b) Composite result of the operations realized by all the p threads at the same time
(c) These numbers of floating points operations are needed to realize a Gaussian elimination by LU factorization [25, p. 15]
The double line indicates a stage at which communication between all threads occurs, which means that every thread i needs
to know results from other threads.

and the second from the third, indicate the necessity of a phase of information
exchange: every thread at that stage needs to know results from other threads.
The second column, labelled composite result, contains the information that is
available by pooling the partial results from each thread and the third column
gives the dimension of this composite result. The last three columns contain
the number of operations carried out by the ith thread.

As indicated by the last line of Table 2, a total of n2+6np+ p(p+1)(2p+1)
3 −2p

multiplications per processor is needed to complete an iteration. In addition,
p(p + 1) divisions are carried out per iteration. Since, generically speaking,
the algorithm ends in at most n

p iterations, an estimate of the worst-case
multithread execution time is given by the following result.

Theorem 7 (Worst-case multithread CCG flop count) The worst-case
multithread execution of CCG using p agents for a linear system (1) of size n
requires

NCCG(p) =
n3

p
+ 6n2 +

2

3
np2 + 2np− 2

3
n (22)

multiplications and divisions carried out in parallel and synchronously, by each
processor.

Note that (22) for p = 1 gives the worst-case flop count for the CG algo-
rithm:

NCG = NCCG(1) = n3 + 6n2 + 2n (23)

multiplications and divisions.
Theorem 7 has the following important corollaries.

Corollary 1 (Multi-thread gain) For problems of size n at least equal to
8, it is always beneficial to use p ≤ n processors rather than a single one. In
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other words, when n ≥ 8,

∀ 1 ≤ p ≤ n, NCCG(1) ≥ NCCG(p) (24)

Proof:

NCCG(1) − NCCG(n) = n3 + 6n2 + 2n −
(

2
3n3 + 9n2 − 2

3n
)

= 1
3 (n3 − 9n2 + 8n)

= 1
3n(n − 1)(n − 8)

Moreover,
dNCCG

dp

∣

∣

∣

∣

p=1

=
1

3
n
(

−3n2 + 10
)

which is negative for n ≥ 2, while

dNCCG

dp

∣

∣

∣

∣

p=n

= n

(

4

3
n + 1

)

> 0

The convexity of NCCG(p) as a function of p then yields the conclusion that
NCCG(p) ≤ NCCG(1) for any 1 ≤ p ≤ n. ⊓⊔

Corollary 2 (Optimal multi-thread gain for CCG) For any size n of
the problem, there exists a unique optimal number p∗ of processors minimizing
NCCG(p). Moreover, when n → +∞,

p∗ ≈
(

3

4

)
1
3

n
2
3 (25a)

NCCG(p∗) ≈
(

(

4

3

)
1
3

+
2

3

(

3

4

)
2
3

)

n2+ 1
3 ≈ 1.651n2+1

3 (25b)

Proof:

dNCCG(p)

dp
= −n3

p2
+

4

3
np + 2n

There exists a unique p∗ such that dNCCG/dp = 0. For this value, one has
n2 = (p∗)2(4

3p∗ + 2), which yields the asymptotic behavior given in (25a). The
value in (25b) is directly deduced, by substituting (25a) in (22). ⊓⊔

Corollary 1 implies that for n > 8, for every choice of the number of threads
p: NCCG(p) < NCG, and thus the CCG algorithm can be expected to converge
in less time than the CG algorithm.

The important conclusion of corollary 2 is that, in the asymptotic limit,
as n becomes large, implying that the optimal p∗ also increases according to
(25a), solution of Ax = b is possible, by the multi-thread method proposed in

this paper, with a cost of O(n2+ 1
3 ) floating point operations, showing a clear

advantage over the classical result of O(n3) for Gaussian elimination.
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4.1 Worst-case operation count for other block CG algorithms

The multiparameter conjugate gradient algorithm proposed by Brezinski in [3]
and [8, sec. 4], carried out using only one thread, calculates a total number of
scalar products and scalar divisions given by

NMPCG(p) = pNCCG(p) = n3 + 6n2p +
2

3
np3 + 2np2 − 2

3
np (26)

so that with p > 1, NCCG < NMPCG, which means that the CCG algorithm
implemented in a multi-thread context is faster than the MPCG algorithm.
The fact that a lower number of iterations than the worst case n/p is expected
in practice does not modify the analysis, because for the same number of
iterations to reach convergence for both the algorithms, the total number of
floating point operations executed by the CCG algorithm is always smaller
than those executed by the MPCG algorithm.

We emphasize that, in practice, specially when sparse matrices are used, the
number of iterations to attain a specified error tolerance is usually much lower
than ⌈n

p ⌉ and, furthermore, this behavior is also observed with the MPCG and

the B-CG algorithms [20], just as is the case with the classical CG algorithm.
The multiple search direction conjugate gradient algorithm (MSD-CG) [13,

14], also implemented in a multi-thread context, performs a number of scalar

products per thread and per iteration equal to n2

p +3n
p +3n+ p(p+1)(2p+1)

3 −2p;

a number of additions equal to n2

p +3n
p +n+np+ p(p+1)(2p+1)

3 − 3p− 2, and a

number of scalar divisions equal to p(p + 1). Hence, assuming again that the
time expended to calculate a scalar product is equal to the time expended to
calculate a division, and neglecting the time used to calculate additions, the
number of floating point operations per iteration performed by the MSD-CG
algorithm is given by:

n2

p
+ 3n + 3

n

p
+

p(p + 1)(2p + 1)

3
+ p(p − 1) (27)

However, it is not proved that the MSD-CG algorithm converges in a finite
number of iterations [13, p. 1140], and, indeed, this is not expected to occur,
essentially because the linear independence of the columns of [Di]

k
0 is lost. The

only available result is that the convergence rate is at least as fast as that of
the steepest descent method [14, p. 1294]. Another drawback of the MSD-CG
method is that communication between all the threads is required after every
operation.

5 Computational experiments

This section reports on experimental results obtained with both randomly ge-
nerated linear systems of low dimension, as well as larger dimensional matrices
that arise in real applications.
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Table 3 Properties of randomly generated s.p.d. test matrices: size, condition number

Matrix Dimension Condition no.

A1 50 103

A2 50 104

A3 50 105

B1 100 103

B2 100 104

B3 100 105

C1 200 103

C2 200 104

C3 200 105

D1 300 103

D2 300 104

D3 300 105

E3 1000 105

5.1 Experiments on dense randomly generated matrices of low dimension

For the experiments reported in this section, a suite of randomly generated
symmetric positive definite matrices of small dimensions will be used for il-
lustrative purposes. The dimensions of the matrices are 50, 100, 200, 300 and
1000, respectively, and they have condition numbers of 103, 104 and 105. The
right hand side b is also randomly chosen. Table 3 shows the matrix label,
its dimension and condition number. In all cases, the CCG algorithm was
tested from 20 different initial points per thread (i.e., 20 executions of the
CCG algorithm from every initial point per thread). All these initial points
are localized on a hypersphere of norm 1 centred on the known solution point,
that is ‖x0i

− x∗‖ = 1, ∀i ∈ {1, . . . , 20}. The matrices tested, as well as the
right hand sides and the initial points are available on request.

The stopping criterion adopted is that at least one thread have a norm
of its residue smaller than 10−8. We test the CG algorithm (one thread), the
CCG algorithm with two and three threads and, for comparative purposes,
the MSD-CG algorithm was also implemented.

The 20 initial points tested in the MSD-CG (as well as the CG algorithm)
are the same used by the first thread in the CCG algorithm. The partition
into subdomains of the vector dk which results in the matrix Dk was made
according to the criterion given in [13, p. 1136]. Two and three threads were
tested. The stopping criterion used was ‖rk‖ < 10−8.

Table 4 reports the mean number of iterations from every initial point
and the mean number of floating point operations (proportional to the time
of convergence, neglecting the communication time and the time expended to
calculate additions) realized in each case.
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Table 4 Mean number of iterations (it.) and mean number of floating
point operations (flop) for every matrix tested. b 6= 0. In the CCG al-

gorithm flop = it.
(

n2 + 6np +
p(p+1)(2p+1)

3
+ p(p− 1)

)

. Stopping criteria

‖ri‖ < 10−8 for some i ∈ {1, . . . , p}. In the MSD-CG algorithm flop =

it.
(

n2

p
+ 3n + 3n

p
+

p(2p+1)(p+1)
3

+ p(p− 1)
)

. Stopping criteria ‖r‖ < 10−8. The al-

gorithms assume that rank degeneracy may occur (so p may be nonconstant). Trajectories
were initiated at 20 different initial points per thread, all of them with norm one, surround-
ing the solution point. In the MSD-CG algorithm, each initial thread is a partition of every
initial point. For each matrix, the floating point operation count in boldface occurs in the
column corresponding to the algorithm that minimized this number.

CG CCG MSD-CG

matrix p = 1 p = 2 p = 3 p = 2 p = 3
it. flop it. flop it. flop it. flop it. flop

A1 48.65 136320 25.95 80750 17.45 59923 159.1 236580 160.15 170930

A2 52 145704 27.35 85113 21.5 73831 405.35 602760 443.1 472940

A3 50.8 142340 32.1 97875 19.9 68337 216.9 322530 235.25 251090

B1 64.85 687540 42.25 507343 33.75 399400 158.1 863540 155.7 586570

B2 74.85 793560 48.7 546020 34.4 407090 263.8 1.44 106 279.85 1.05 106

B3 90.1 955240 90.4 963270 53.75 627110 268.55 1.46 106 300.85 1.13 106

C1 106.95 4.40 106 71.55 3.03 106 56.35 2.45 10
6 240.05 5.02 106 257.4 3.64 106

C2 117.5 4.84 106 81.2 3.44 106 61.85 2.69 10
6 402.9 8.42 106 407.9 5.78 106

C3 117.25 4.83 106 79.2 3.35 106 66.7 2.90 10
6 414 8.65 106 446.35 6.32 106

D1 89.5 8.21 106 67 6.27 106 57 5.44 106 157.75 7.31 106 155.4 4.85 10
6

D2 179.45 16.47 106 112.95 10.57 106 85.85 8.19 10
6 437.4 20.27 106 465.7 14.54 106

D3 152 13.95 106 107.85 10.09 106 86.26 8.23 10
6 576.55 26.73 106 607.5 18.97 106

E3 224.75 2.26 108 168.25 1.70 108 139.7 1.42 108 406.35 2.05 108 409.25 1.38 10
8

5.2 Experiments on dense randomly generated matrices of larger dimension

This section reports on a suite of numerical experiments carried out on a set of
random symmetric positive definite matrices of dimensions varying from 1000
to 25000, the latter being the largest dimension that could be accommodated
in the fast access RAM memory of the multicore processor. The random sym-
metric matrices were generated using a C translation of Shilon’s MATLAB
code [24], which produces a matrix distribution uniform over the manifold of

orthogonal matrices with respect to the induced R
n2

Lebesgue measure. The
right hand sides and initial conditions were also randomly generated, with
all entries uniformly distributed on the interval [−10, 10]. In this section, the
matrices used were dense and the use of preconditioners was not investigated.

The matrices used, the right hand sides and initial conditions as well as
the numerical results of the tests (omitted here for lack of space) are available
on request.

In order to evaluate the performance of the algorithm proposed in this pa-
per, a program was written in language C. The compiler used was the GNU
Compiler Collection (GCC), running under Linux Ubuntu 10.0.4. For the Li-
near Algebra calculations, we used the Linear Algebra Package (LAPACK)
and the Basic Linear Algebra Subprograms (BLAS). Finally, in order to par-
allelize the program, we used the Open Multi Processing (OMP) API. The
processor used was an Intel Core2Quad CPU Q8200 running at 2.33 MHz
with four cores.
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Fig. 1 Mean time to convergence for random test matrices of dimensions varying from 1000
to 25000, condition number equal to 106, for 3 thread CCG and standard CG algorithms.

5.2.1 Experimental evaluation of speedup

The results of the cooperative 3 thread CCG, in comparison with standard
CG, with a tolerance of 10−3, and matrices with different sizes, but all with
the same condition number of 106, are shown in Figure 1. Multiple tests were
performed, using different randomly generated initial conditions (20 different
initial conditions for the small matrices and 10 for the bigger ones). Figure
1 shows the mean values computed for these tests. The iteration speedup of
CCG in comparison with CG is defined as the mean number of iterations from
every initial point that CG took to converge divided by the mean number of
iterations that CCG took to converge, i.e.:

Iteration speedup(p) =
mean number of iterations CG

mean number of iterations CCG(p)

Similarly, the time speedup (classical speedup) is the ratio of the time to con-
vergence, that is, the mean time taken by the CG algorithm to run the main
loop until convergence divided by the mean time taken by the CCG algorithm
from every initial point, i.e.:

Time speedup(p) =
mean time of convergence CG

mean time of convergence CCG(p)

The experimental speedups for each dimension are shown in Figure 2. The
iteration and classical speedups seem to be roughly equal up to a certain size
of matrix (n = 16000); however, above this dimension, there is an increasing
trend for both speedups.
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Fig. 2 Average speedups of Cooperative 3-thread CCG over classic CG for random test
matrices of dimensions varying from 1000 to 25000, condition number equal to 106.

The numerical results obtained show that CCG, using 3 threads, leads to
an improvement in comparison with the usual CG algorithm. The average
iteration speedup and the classical speedup of CCG are respectively, 1.62 and
1.94, indicating that CCG converges almost twice as fast as CG for dense
matrices with reasonably well-separated eigenvalues.

5.2.2 Verifying the flop count estimates

Figure 3 shows the mean time spent per iteration in seconds (points plotted as
squares), versus matrix dimension, as well as the parabola fitted to this data,
using least squares. Using the result from the last row of table 2 and multi-
plying it by the mean time per scalar multiplication, we obtain the parabola
(dash-dotted line in Figure 3) expected in theory. In order to estimate the time
per scalar multiplication, we divided the experimentally obtained mean total
time spent on each iteration and divided it by the number of scalar multipli-
cations performed in each iteration. This was done for each matrix dimension.
Since the multicore threads being used for all experiments are identical, each
of these divisions should generate the same value of time taken to carry out
each scalar multiplication, regardless of matrix dimension. It was observed that
these divisions produced a data set which has a mean value of 8.10 nanoseconds
per scalar multiplication, with a standard deviation of 1.01 nanoseconds, show-
ing that the estimate is reasonable. From equation (22), substituting p = 3,
neglecting lower order terms, and multiplying it by the estimated mean time
per scalar multiplication (8.10 nanoseconds), the number of matrix multipli-
cations per iteration, NCCG(p), p = 3, is a cubic polynomial in n. Thus, the
logarithm of the dimension (n) of the problem versus the logarithm of time
needed to convergence is expected to be a straight line of slope 3. Figure 4
shows this straight line, fitted to the data (squares) by least squares. Its slope
(2.542) is fairly close to 3, and data seems to follow a linear trend. The devia-
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Fig. 4 Log-log plot of mean time to convergence versus problem dimension

tion of the slope from the ideal value has several probable causes, the first one
being that the exact exponent of 3 is a result of a worst case analysis of CG
in exact arithmetic. It is known that CG usually converges, to a reasonable
tolerance, in much less than n iterations [20].

Similarly, the logarithm of the number of iterations needed to convergence
versus the logarithm of the dimension of the problem should also follow a
linear trend. Since the number of iterations is expected to be n/3, the slope
of this line should be 1. This log-log plot is shown in figure 5, in which the
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Fig. 5 Iterations needed to convergence versus problem dimension

straight line was fitted by least squares to the original data (red squares). The
slope (0.501) of the fitted line is smaller than 1, but is seen to fit the data well
(small residuals). The fact that both slopes are smaller than their expected
values indicates that the CCG algorithm is converging faster than the worst
case estimate. Another reason is that a fairly coarse tolerance of 10−3 is used,
and experiments reported show that decreasing the tolerance favors the CCG
algorithm even more.

5.3 Experiments on sparse matrices arising from real applications

In this section the results of tests carried out with a suite of sparse symmetric
positive definite matrices which arise from real applications are reported. The
matrices chosen were taken from [1] and their characteristics are shown in
Table 5. The right hand side b was randomly chosen as well as the initial
conditions, with all entries uniformly distributed on the interval [−10, 10]. The
tests were performed from 5 different initial points per thread. The stopping
criterion was that at least one thread has a norm of its residual vector lower
than 10−8.

The right hand sides used, the initial conditions as well as the numerical
results of the tests are available on request.

The code for the CCG algorithm was written in language C, with compiler
GNU Compiler Collection (GCC), running under Linux Ubuntu 10.0.4. We
also used the Linear Algebra Package (LAPACK) and the Basic Linear Algebra
Subprograms (BLAS). Finally, in order to parallelize the program, we used the
Open Multi Processing (OMP) API. The processor used was an Intel Core i7-
4770 3.4 GHz.

The tests were performed varying the number of threads from 1 (classical
CG) to 8 and reporting the mean number of iterations to reach the stopping
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Table 5 Sparse symmetric positive definite matrices extracted from [1]. Dimension, number
of entries different to zero and approximate condition number. The dash means that the
condition number was not specified or calculated.

name dimension n nonzeros cond. number

HB\bcsstk14 1806 63454 1.31e10
HB\bcsstk18 11948 149090 6.486e11

Lourakis\bundle1 10581 770811 1.3306e4
TKK\cbuckle 13681 676515 8.0476e7

JGD-Trefethen\Trefethen-20000b 19999 554435 -
JGD-Trefethen\Trefethen-20000 20000 554466 -

MathWorks\Kuu 7102 340200 3.2553e4
Pothen\bodyy4 17546 121550 1.016e3
Pothen\bodyy5 18589 128853 9.9769e3
Pothen\bodyy6 19366 134208 9.7989e4

UTEP\Dubcova1 16129 253009 2.6247e3
HB\gr-30-30 900 7744 377.23

criterion and the mean time of convergence of the 5 executions performed from
each one of the different initial points.

For illustrative purposes, Figures 6, 7 and 8 show the speedups for a number
of threads varying from 1 to 8 with respect to the classical CG algorithm for
the matrices bcsstk18, cbuckle and gr-30-30, respectively.

Note that if the CCG algorithm and the CG algorithm converge in the
worst case, the numbers of iterations to converge are ⌈n

p ⌉ and n, respectively,

and hence for n ≫ p the expected iteration speedup is equal to p (a straight
line of slope 1). Similarly, the expected time speedup in the worst case is given
by the time to convergence of the CG algorithm, which is proportional to NCG

given by (23) divided by the time to convergence taken by the CCG algorithm,
which is proportional to NCCG(p) given by (22); for large n this expected time
speedup in the worst case is also approximately equal to p.

Expected worst case time speedup =
n3 + 6n2 + 2n

n3

p + 6n2 + 2
3np2 + 2np− 2

3n

Figure 9 shows the iteration speedup and the time speedup for each matrix
reported in Table 5 and for each thread tested from 1 to 8. Figure 9 shows
that for all the matrices tested, the greater the number of threads, the greater
the speedups, exactly as expected when a small number of threads is used and
as it happens in the worst case. For some matrices, an increase in the number
of threads does not increase the speedup significantly, as observed with the
matrices bodyy4, bodyy5 and bodyy6, whereas with other matrices the increase
of the speedup with the number of threads is much greater. Further research
is needed to explain these results and correlate them to, for example, the
eigenvalue distribution of the matrices.

Figure 10 shows the average iteration and average time speedups for the
12 matrices reported in Table 5. Figure 10 confirms the trend of speedup
increasing with the number of threads.
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Fig. 6 Iteration speedup and time speedup for the matrix HB\bcsstk18 vs. number of
threads p.
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Fig. 7 Iteration speedup and time speedup for the matrix TKK\cbuckle vs. number of
threads p.

6 Conclusions

This paper revisited some existing block and multiparameter CG algorithms in
the new context of multi-thread computing, proposing a cooperative conjugate
gradient (CCG) method for linear systems with symmetric positive definite
coefficient matrices. This CCG method permits efficient implementation on
a multicore computer and experimental results bear out the main theoretical
properties, namely, that speedups close to the theoretical value of p, when a
p-core computer is used, are possible, when the matrix dimension is suitably
large.
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Fig. 8 Iteration speedup and time speedup for the matrix HB\gr-30-30 vs. number of
threads p.
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Fig. 9 Iteration speedup (left) and time speedup (right) for each matrix reported in Table
5 and for each number of threads used by the CCG algorithm.

The experimental results were carried out with dense randomly generated
matrices as well as with matrices arising from real applications, which are
typically sparse and sometimes ill-conditioned. In all the cases, the increase of
the speedups with the number of threads was observed, although the results
are less significant for some matrices than for others, which is a topic requiring
further investigation.

The comparison with the other multi-thread block CG method presented in
the literature, the MSD-CG [13,14] showed that the CCG algorithm converges
faster than the MSD-CG (with the same number of threads), in almost all
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Fig. 10 Average iteration speedup and time speedup for the 12 matrices reported in Table
5 vs. number of threads p.

cases. The tests with large matrices, either dense and randomly generated or
sparse arising from real applications, show that the CCG algorithm is faster
than the classic CG and that the speedup increases with the number of threads.

The use of processors with a larger number of threads should also permit
further exploration of the notable theoretical result of Corollary 2 that, in the
asymptotic limit, as n becomes large, implying that the optimal number of
threads p∗ also increases according to (25a), solution of Ax = b is possible by

the method proposed here with a worst-case cost of O(n2+ 1
3 ) floating point

operations.
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Appendix: Proofs of results in sections 3.1 and 3.2

Proof of theorem 4.
For all i ∈ {1, . . . , p}, denoting

hi(γi0
, γi1

, . . . , γik−1
) := f(xi0 + D0γT

i0
+ D1γT

i1
+ · · ·+ Dk−1γT

ik−1
) ∈ R

where γiℓ
∈ R

1×p, ℓ ∈ {0, . . . , k− 1} are row vectors; the coefficients γiℓ
that minimize the

scalar function f(x) on the affine set xi0 + span [Dj ]
k−1
0 are given by:

∀ℓ < k : ∂hi
∂γ iℓ

T
= ∇Tf(xi0 + D0γT

i0
+ D1γT

i1
+ · · ·+ Dk−1γT

ik−1
)Dℓ

= (ri0 + AD0γT
i0

+ AD1γT
i1

+ · · ·+ ADk−1γT
ik−1

)TDℓ

= rT
i0

Dℓ + γiℓ
DT

ℓ
ADℓ = 0
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which implies that γiℓ
= −rT

i0
Dℓ(D

T

ℓ
ADℓ)

−1 ∈ R
1×p; and considering all the row vectors

i ∈ {1, . . . , p}:
γℓ = −RT

0Dℓ(D
T
ℓADℓ)

−1 ∈ R
p×p (28)

For all x ∈ xi0 + span [Dj ]
ℓ−1
0 : x = xi0 + D0δT

0 + · · · + Dℓ−1δT
ℓ−1, where δj ∈

R
1×p, ∀j ∈ {0, . . . , ℓ− 1}. Thus:

∇f(x) = ri0 + AD0δT
0 + · · ·+ ADℓ−1δT

ℓ−1, which implies ∇Tf(x)Dℓ = rT
i0

Dℓ

and this is valid for all x ∈ xi0 + span [Dj ]
ℓ−1
0 , hence it is valid for xiℓ

= xi0 + D0αT
i0

+

· · ·+Dℓ−1αT
iℓ−1

, where αT
ij

is the ith column of the αT
j matrix (12) for all j ∈ {0, . . . , ℓ−1}.

Therefore, ∇Tf(xiℓ
)Dℓ = rT

iℓ
Dℓ = rT

i0
Dℓ, and considering all the row vectors rT

iℓ
, i ∈

{1, . . . , p}:
RT

ℓDℓ = RT
0Dℓ

and substituting in (28):

γℓ = −RT

ℓDℓ(D
T

ℓADℓ)
−1 = αℓ ∀ℓ < k (29)

which proves that the step size (12) minimizes f(xik
) on the affine set xi0 + span [Dj ]

k−1
0

for all i ∈ {1, . . . , p}.
Note also that, by (10) xik

= xi0 + D0αT
i0

+ D1αT
i1

+ · · ·+ Dk−1αT
ik−1

, hence, for all

ℓ < k:

∇Tf(xik
)Dℓ = ∇Tf(xi0 + D0αT

i0
+ D1αT

i1
+ · · ·+ Dk−1αT

ik−1
)Dℓ =

(ri0 + AD0αT
i0

+ AD1αT
i1

+ · · ·+ ADk−1αT
ik−1

)TDℓ = rT
ik

Dℓ = 0

and considering all the row vectors i ∈ {1, . . . , p}:

RT

kDℓ = 0 ∀ℓ < k (30)

⊓⊔

Proof of lemma 3.
By theorem 4, if Rk is orthogonal to span [Di]

k−1
0 , then this is orthogonal to span [Ri]

k−1
0 ,

which means that for all j < k: RT

k
Rj = 0.

By (10): ∀j < k : Xj+1 = Xj + DjαT
j hence DjαT

j = Xj+1 −Xj

which implies RT
k
ADjαT

j = RT
k
(Rj+1 −Rj)

Supposing rank Dj = p, αj is non singular, thus ∀j < k − 1 : RT

k
ADj = 0

for j = k − 1 : RT

k
ADk−1αT

k−1 = RT

k
Rk 6= 0 ⇒ αT

k−1 = (RT

k
ADk−1)

−1RT

k
Rk

Using this result in (14):

Dk+1 = Rk+1 −
∑k

j=0 Dj(D
T
jADj)

−1DT
jARk+1

= Rk+1 −Dk(DT

k
ADk)−1DT

k
ARk+1

= Rk+1 −Dk(RT

k+1ADk(DT

k
ADk)−1)T = Rk+1 + DkβT

k

(31)

which coincides with (11) with step size (13), thus proving that the matrices generated by
this method are also conjugate. ⊓⊔

Proof of Lemma 6.
By induction. Since the columns of D0 are linearly independent by hypotheses, suppos-

ing rank [Di]
k−1
0 = pk, it is enough to prove that the columns of [Di]k0 also are linearly

independent if p(k + 1) ≤ n.
By equation (11): Dk+1 = Rk+1 + DkβT

k .

Evidently, {dik
}p1 ⊂ span [Di]

k
0 . Using the proof of the lemma 3, {rik+1

}p1 ⊂ span [AiR0]k+1
0 =

span [Di]
k+1
0 and {rik+1

}p1⊂/span [AiR0]ki = span [Di]k0 because Rk+1 is orthogonal to
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span [Di]k0 . Hence, the columns of Rk+1 can be expressed neither as a linear combination
of [D0 · · ·Dk ], and, from (11), nor as a linear combination of the columns of Dk+1, which

means that the columns of [D0 · · ·DkDk+1] = [Di]
k+1
0 are linearly independent.

Note that this linear independence persists until an iteration k such that p(k + 1) ≥ n,
and in this case [Di]k0 ∈ R

n×p(k+1) and rank [Di]k0 = n ≤ p(k + 1). ⊓⊔

Proof of theorem 5.
By lemma 6 [D0 · · ·Dk∗−1] ∈ R

n×pk∗
, and rank [D0 · · ·Dk∗−1] = n = pk∗. Hence,

every vector x∗ − xi0 , ∀i ∈ {1, . . . , p} can be expressed as a linear combination of a base of

the subspace span [Di]
k∗

−1
0 :

x∗ − xi0 = D0γT
i0

+ D1γT
i1

+ · · ·+ Dk∗−2γT
ik∗−2

+ Dk∗−1γT
ik∗−1

(32)

where γik
∈ R

1×p, k ∈ {0, . . . , k∗ − 1} are the coefficients of the linear combination of
x∗ − xi0 .

Thus, for all k ∈ {0, . . . , k∗ − 1}, i ∈ {1, . . . , p}:

DT

kA(x∗ − xi0 ) = DT

kADkγT
ik
∈ R

p ⇒ γT
ik

= (DT

kADk)−1DT

kA(x∗ − xi0 )

Following the sequence (10), from xi0 to xik
for all i ∈ {1, . . . , p}:

xik
− xi0 = D0αT

i0
+ D1αT

i1
+ · · ·+ Dk−1αT

ik−1

⇒ DT
k
A(xik

− xi0 ) = 0
⇒ DT

k
Axik

= DT
k
Axi0

where lemma 3 was used and αij
is the ith row of the αj matrix calculated as in (12).

Substituting in the former equation:

γT
ik

= (DT

kADk)−1DT

kA(x∗ − xik
) = −(DT

kADk)−1DT

krik

and considering all the p rows:

Γ T

k := [γT
ik

]p1 = −(DT

kADk)−1DT

kRk

which coincides with (12). Hence, the coefficients of the linear combination (32) are the step
sizes αk , and the sequence

xik∗ = xi0 + D0αT
i0

+ · · ·+ Dk∗−1αT
ik∗−1

(33)

for all i ∈ {1, . . . , p} is equal to x∗, thus proving that all the p threads converge in k∗

iterations. ⊓⊔

Proof of lemma 7.
By lemma 6, for all k > 0 until convergence, if Dk 6= 0, then {dik

}
pk
1 ⊂/span [Di]

k−1
0

and rank [dik
]
pk
1 = pk ≥ 1. Therefore, the matrix [D0 · · ·Dk∗−1], where k∗ is chosen such

that min rank [D0 · · ·Dk∗−1] ≥ n, has a finite number of columns.

Finally we can choose pk∗−1 = n−
∑k∗

−2
k=0 pk, that is, we eliminate columns of Dk∗−1

in such a way to have a number of columns enough to complete n linearly independent

columns, i.e. rank [Di]
k∗

−1
0 = rank D0 + · · ·+ rank Dk∗−1 = p0 + · · ·+ pk∗−1 = n. ⊓⊔

Note that in the best case pk = p, ∀k ∈ {0, . . . , k∗ − 1}, which implies that k∗ = ⌈n
p
⌉.

In the general case ⌈n
p
⌉ ≤ k∗ ≤ n− p + 1.


