B. Ermentrout and N. , Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I., SIAM Journal on Mathematical Analysis, vol.15, issue.2, pp.215-237, 1984.
DOI : 10.1137/0515019

C. Van-vreeswijk, L. Abbot, and B. Ermentrout, When inhibition not excitation synchronizes neural firing, Journal of Computational Neuroscience, vol.16, issue.4, pp.313-321, 1994.
DOI : 10.1007/BF00961879

P. Ashwin, S. Coombes, and R. Nicks, Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience, The Journal of Mathematical Neuroscience, vol.96, issue.7, pp.2016-2017
DOI : 10.1201/9781420035216

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703605

I. Malkin, Methods of Poincare and Liapunov in Theory of Non-Linear Oscillations, p.665, 1949.

I. Malkin, Some Problems in Nonlinear Oscillation Theory, 1956.

A. Buic?abuic?a, J. Françoise, and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Math, vol.6, issue.1, pp.103-111, 2007.

M. Roseau, Vibrations nonlinéaires et théorie de la stabilité, 1966.

J. Françoise, Oscillations en biologie: Analyse qualitative et modèles, 2005.
DOI : 10.1007/3-540-37670-4

S. M. Crook, B. Ermentrout, and J. M. Bower, Spike frequency affects the 675 synchronization properties of networks of cortical oscillators, pp.1643-1678, 1998.

C. C. Chow and N. , Dynamics of Spiking Neurons with Electrical Coupling, Neural Computation, vol.18, issue.7, pp.1643-1678, 2000.
DOI : 10.1023/A:1008841325921

T. Lewis and J. , Dynamics of spiking neurons connected by both in- 680 hibitory and electrical coupling, Journal of Computational Neuroscience, vol.14, issue.3, pp.283-309, 2003.
DOI : 10.1023/A:1023265027714

A. Urban and B. Ermentrout, Formation of antiwaves in gap-junction-coupled chains of neurons, Physical Review E, vol.221, issue.1, p.11907, 2012.
DOI : 10.1016/0167-2789(95)00198-0

D. G. Aronson, B. Ermentrout, and N. , Amplitude response of coupled oscillators, Physica D: Nonlinear Phenomena, vol.41, issue.3, pp.41-403, 1990.
DOI : 10.1016/0167-2789(90)90007-C

B. Ermentrout and N. , Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators, Handbook 690 of Dynamical Systems II: Towards Applications, pp.5-54, 2002.

B. Ermentrout, Type I Membranes, Phase Resetting Curves, and Synchrony, Neural Computation, vol.4, issue.5, pp.979-1001, 1996.
DOI : 10.1016/0022-5193(67)90051-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. B. Ermentrout, M. Pascal, and B. Gutkin, The Effects of Spike Frequency Adaptation and Negative Feedback on the Synchronization of Neural Oscillators, Neural Computation, vol.79, issue.6, pp.695-1285, 2001.
DOI : 10.1023/A:1008864410375

I. Z. Kiss, Y. Zhai, and J. L. Hudson, Predicting Mutual Entrainment of Oscillators with Experiment-Based Phase Models, Physical Review Letters, vol.23, issue.24, pp.94-248301, 2005.
DOI : 10.1137/1.9780898718195

M. Wickramasinghe and I. Z. Kiss, Spatially Organized Dynamical States in Chemical Oscillator Networks: Synchronization, Dynamical Differentiation, and Chimera Patterns, PLoS ONE, vol.116, issue.11, p.80586, 2013.
DOI : 10.1371/journal.pone.0080586.g006

URL : http://doi.org/10.1371/journal.pone.0080586

J. Belair and P. Holmes, On linearly coupled relaxation oscillators

T. Bem and J. , Short Duty Cycle Destabilizes a Half-Center Oscillator, But Gap Junctions Can Restabilize the Anti-Phase Pattern, Journal of Neurophysiology, vol.91, issue.2, pp.693-703, 2004.
DOI : 10.1152/jn.00783.2003

T. Chakraboty and R. Rand, The transition from phase locking to drift in a system of two weakly coupled van der pol oscillators, International Journal of Non-Linear Mechanics, vol.23, issue.5-6, pp.369-376, 1988.
DOI : 10.1016/0020-7462(88)90034-0

G. Cymbalyuk, E. Nikolaev, and R. Borisyuk, In-phase and antiphase selfoscillations in a model of two electrically coupled pacemakers, Biol. Cybern, pp.71-153, 1994.

]. A. Sherman and J. , Rhythmogenic effects of weak electrotonic coupling in neuronal models., Proc. Natl. Acad. Sci. USA, pp.715-2471, 1992.
DOI : 10.1073/pnas.89.6.2471

N. Kopell and D. Somers, Anti-phase solutions in relaxation oscillators coupled through excitatory interactions, Journal of Mathematical Biology, vol.33, issue.3, pp.261-280, 1995.
DOI : 10.1007/BF00169564

D. Terman, E. Lee, J. Rinzel, and T. Bem, Stability of anti-phase and in-phase 720 locking by electrical coupling but not fast inhibition alone

B. Pfeuty, G. Mato, D. Golomb, and D. , The Combined Effects of Inhibitory and Electrical Synapses in Synchrony, Neural Computation, vol.16, issue.3, pp.633-670, 2005.
DOI : 10.2170/jjphysiol.8.305

URL : https://hal.archives-ouvertes.fr/hal-00094743

J. Mancilla, T. Lewis, D. Pinto, J. Rubin, and C. B. , Synchronization of Electrically Coupled Pairs of Inhibitory Interneurons in Neocortex, Journal of Neuroscience, vol.27, issue.8, pp.2058-2073, 2007.
DOI : 10.1523/JNEUROSCI.2715-06.2007

S. Coombes, Phase-locking in networks of pulse-coupled McKean relaxation oscillators, Phys, pp.173-188, 2001.

]. S. Coombes, Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models, SIAM Journal on Applied Dynamical Systems, vol.7, issue.3, pp.730-1101, 2008.
DOI : 10.1137/070707579

M. Krupa and P. Szmolyan, Relaxation Oscillation and Canard Explosion, Journal of Differential Equations, vol.174, issue.2, pp.312-368, 2001.
DOI : 10.1006/jdeq.2000.3929

URL : http://doi.org/10.1006/jdeq.2000.3929

M. Brøns, Bifurcations and instabilities in the Greitzer model for compressor system surge, Math. Eng. Ind, vol.2, pp.51-63, 1988.

M. Krupa and M. Wechselberger, Local analysis near a folded saddle-node singularity, Journal of Differential Equations, vol.248, issue.12, pp.2841-2888, 2010.
DOI : 10.1016/j.jde.2010.02.006

URL : https://hal.archives-ouvertes.fr/hal-00845979

J. Guckenheimer, K. Hoffman, and W. Weckesser, NUMERICAL COMPUTATION OF CANARDS, International Journal of Bifurcation and Chaos, vol.70, issue.3, pp.2669-2687, 2000.
DOI : 10.1162/neco.1992.4.1.84

M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. M. Osinga et al., Mixed-Mode Oscillations with Multiple Time Scales, SIAM Review, vol.54, issue.2
DOI : 10.1137/100791233

URL : https://hal.archives-ouvertes.fr/hal-00765216

M. Desroches, T. J. Kaper, and M. Krupa, Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.49, issue.1, p.46106, 2013.
DOI : 10.1016/j.jtbi.2010.03.030

URL : https://hal.archives-ouvertes.fr/hal-00932344

T. Vo, R. Bertram, and M. Wechselberger, Multiple geometric viewpoints of 750 mixed mode dynamics associated with pseudo-plateau bursting

M. Krupa, N. Popovic, N. Kopell, and H. G. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells, Chaos J. Comput. Neurosci, vol.18, issue.21, pp.755-271, 2006.

J. Rubin and M. Wechselberger, Giant squid-hidden canard: the 3D geometry of the Hodgkin???Huxley model, Biological Cybernetics, vol.4, issue.110, pp.5-32, 2007.
DOI : 10.1113/jphysiol.1952.sp004764

J. Drover, J. Rubin, J. Su, and B. Ermentrout, Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies, SIAM Journal on Applied Mathematics, vol.65, issue.1, pp.69-92, 2004.
DOI : 10.1137/S0036139903431233

B. Ermentrout and M. , Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model, SIAM Journal on Applied Dynamical Systems, vol.8, issue.1, pp.253-278, 2009.
DOI : 10.1137/080724010

K. Roberts, J. Rubin, and M. Welchselberger, Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model, SIAM Journal on Applied Dynamical Systems, vol.14, issue.4, pp.1808-1844, 2015.
DOI : 10.1137/140981770

H. G. Rotstein, N. Kopell, A. M. Zhabotinsky, and I. R. Epstein, A canard mechanism for localization in systems of globally coupled oscillators, SIAM J. Appl. Math, vol.63, issue.6, 1998.

H. G. Rotstein and R. Kuske, Localized and asynchronous patterns via canards 775 in coupled calcium oscillators, Phys, pp.46-61, 2006.
DOI : 10.1016/j.physd.2006.01.007

E. Ersöz, M. Desroches, M. Krupa, and F. Clément, Canard-Mediated (De)Synchronization in Coupled Phantom Bursters, SIAM Journal on Applied Dynamical Systems, vol.15, issue.1
DOI : 10.1137/15M101840X

E. Brown, J. Moehlis, and P. Holmes, On the phase reduction and response 780 dynamics of neural oscillator populations, pp.673-715, 2003.

E. M. Izhikevich, Phase Equations for Relaxation Oscillators, SIAM Journal on Applied Mathematics, vol.60, issue.5, pp.1789-1805, 2000.
DOI : 10.1137/S0036139999351001

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. Curtu, A. Shpiro, N. Rubin, and J. , Mechanisms for Frequency Control in Neuronal Competition Models, SIAM Journal on Applied Dynamical Systems, vol.7, issue.2, pp.609-649, 2008.
DOI : 10.1137/070705842

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954747

C. Zhang and T. Lewis, Phase response properties of half-center oscillators, Journal of Computational Neuroscience, vol.64, issue.1, pp.55-74, 2013.
DOI : 10.1007/978-1-4614-0739-3_1

T. Netoff, C. Acker, J. Bettencourt, and J. A. White, Beyond Two-Cell Networks: Experimental Measurement of Neuronal Responses to Multiple Synaptic Inputs, Journal of Computational Neuroscience, vol.201, issue.3, pp.287-295, 2005.
DOI : 10.1007/s10827-005-0336-9

Y. Kuramoto, Chemical oscillators, waves, and turbulence, 1984.
DOI : 10.1007/978-3-642-66784-8_15

B. Ermentrout, Simulating, analyzing, and animating dynamical systems: 795 a guide to XPPAUT for researchers and students, SIAM, 2002.
DOI : 10.1137/1.9780898718195

E. M. Izhikevich and F. C. Hoppensteadt, Slowly Coupled Oscillators: Phase Dynamics and Synchronization, SIAM Journal on Applied Mathematics, vol.63, issue.6, pp.1935-1953, 2003.
DOI : 10.1137/S0036139902400945

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Govaerts and B. , Computation of the Phase Response Curve: A Direct Numerical Approach, Neural Computation, vol.18, issue.4, pp.817-847, 2006.
DOI : 10.1162/neco.1995.7.2.307

E. J. Doedel, A. R. Champneys, F. Dercole, T. Fairgrieve, Y. Kuznetsov et al., auto-07p : Continuation and bifurcation software for ordinary differential equations, 2007.

]. B. Ermentrout, B. Beverlin, I. , and T. Netoff, Phase Response Curves to Measure Ion Channel Effects on Neurons, p.805
DOI : 10.1007/978-1-4614-0739-3_9

J. Moehlis, Canards for a reduction of the Hodgkin-Huxley equations, Journal of Mathematical Biology, vol.52, issue.2
DOI : 10.1007/s00285-005-0347-1

P. De-maesschalck and M. Desroches, Numerical Continuation Techniques for Planar Slow-Fast Systems, SIAM Journal on Applied Dynamical Systems, vol.12, issue.3, pp.1159-1180, 2013.
DOI : 10.1137/120877386

URL : https://hal.archives-ouvertes.fr/hal-00844785

P. Ashwin and J. Swift, The dynamics ofn weakly coupled identical oscillators, Journal of Nonlinear Science, vol.16, issue.3, pp.69-108, 1992.
DOI : 10.1007/978-1-4612-1042-9

D. Somers and N. , Rapid synchronization through fast threshold modulation, Biological Cybernetics, vol.48, issue.2, pp.393-407, 1993.
DOI : 10.1007/978-1-4615-9047-7

E. Lee and D. Terman, Stable Antiphase Oscillations in a Network of Electrically Coupled Model Neurons, SIAM Journal on Applied Dynamical Systems, vol.12, issue.1, pp.1-27, 2013.
DOI : 10.1137/120863083

M. Oh and V. Matveev, Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons, Journal of Computational Neuroscience, vol.5, issue.2, pp.303-320, 2009.
DOI : 10.1007/978-1-4757-3484-3

S. Maran and C. Canavier, Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved, Journal of Computational Neuroscience, vol.373, issue.13
DOI : 10.1137/1.9780898718195

A. T. Winfree, The geometry of biological time, Interdisciplinary Applied Mathematics, vol.12, p.825, 1980.
DOI : 10.1007/978-3-662-22492-2

P. Langfield, B. Krauskopf, and H. M. Osinga, Solving Winfree's puzzle: The isochrons in the FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.246, issue.1, p.13131, 2014.
DOI : 10.1007/978-1-4757-3484-3

P. Langfield, B. Krauskopf, and H. M. Osinga, Forward-Time and Backward-Time Isochrons and Their Interactions, SIAM Journal on Applied Dynamical Systems, vol.14, issue.3, pp.1418-1453, 2015.
DOI : 10.1137/15M1010191

G. Ermentrout, Period Doublings and Possible Chaos in Neural Models, SIAM Journal on Applied Mathematics, vol.44, issue.1, pp.80-95, 1984.
DOI : 10.1137/0144007

I. B. Schwartz and T. Erneux, Subharmonic Hysteresis and Period Doubling Bifurcations for a Periodically Driven Laser, SIAM Journal on Applied Mathematics, vol.54, issue.4, pp.1083-1100, 1994.
DOI : 10.1137/S0036139992230703

J. Durham and J. , Feedback control of canards, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.1, issue.1, p.15110, 2008.
DOI : 10.1103/PhysRevA.45.604

M. Desroches, M. Krupa, and S. Rodrigues, Inflection, canards and excitability threshold in neuronal models, Journal of Mathematical Biology, vol.946, issue.1, pp.989-1017, 2013.
DOI : 10.1016/S0006-8993(96)01184-5

URL : https://hal.archives-ouvertes.fr/hal-00765148

J. Mitry, M. Mccarthy, N. Kopell, and M. Wechselberger, Exitable neurons, firing threshold manifolds and canards, J. Math. Neurosci, vol.3, issue.12
DOI : 10.1186/2190-8567-3-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819701

M. Krupa, B. Ambrosio, and M. A. Aziz-alaoui, Weakly coupled two-slow?twofast systems, folded singularities and mixed mode oscillations, Nonlinearity, vol.845, issue.7, pp.27-1555, 2014.
DOI : 10.1088/0951-7715/27/7/1555

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

DOI : 10.1142/9789812703231_0010

S. Schecter, Adjoint equation and Melnikov function