
HAL Id: hal-01559073
https://inria.hal.science/hal-01559073v5
Submitted on 17 Jul 2018 (v5), last revised 14 Oct 2019 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equivalences for Free
Nicolas Tabareau, Éric Tanter, Matthieu Sozeau

To cite this version:
Nicolas Tabareau, Éric Tanter, Matthieu Sozeau. Equivalences for Free: Univalent Parametricity for
Effective Transport. Proceedings of the ACM on Programming Languages, 2018, ICFP’18, pp.1-29.
�10.1145/3234615�. �hal-01559073v5�

https://inria.hal.science/hal-01559073v5
https://hal.archives-ouvertes.fr

92

Equivalences for Free
Univalent Parametricity for Effective Transport

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

ÉRIC TANTER, Computer Science Department (DCC) - University of Chile, Chile

MATTHIEU SOZEAU, Pi.R2 Project-Team, Inria and IRIF, France

Homotopy Type Theory promises a unification of the concepts of equality and equivalence in Type Theory,

through the introduction of the univalence principle. However, existing proof assistants based on type theory

treat this principle as an axiom, and it is not yet clear how to extend them to handle univalence internally.

In this paper, we propose a construction grounded on a univalent version of parametricity to bring the

benefits of univalence to the programmer and prover, that can be used on top of existing type theories. In

particular, univalent parametricity strengthens parametricity to ensure preservation of type equivalences. We

present a lightweight framework implemented in the Coq proof assistant that allows the user to transparently

transfer definitions and theorems for a type to an equivalent one, as if they were equal. Our approach handles

both type and term dependency. We study how to maximize the effectiveness of these transports in terms

of computational behavior, and identify a fragment useful for certified programming on which univalent

transport is guaranteed to be effective. This work paves the way to easier-to-use environments for certified

programming by supporting seamless programming and proving modulo equivalences.

CCS Concepts: • Theory of computation→ Type theory; Type structures; Program reasoning;

Additional Key Words and Phrases: Type Equivalence, Homotopy Type Theory, Parametricity, Coq

ACM Reference Format:
Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. 2018. Equivalences for Free: Univalent Parametricity

for Effective Transport. Proc. ACM Program. Lang. 2, ICFP, Article 92 (September 2018), 29 pages. https:

//doi.org/10.1145/3236787

1 INTRODUCTION
If mathematics is the art of giving the same name to different things, programming is the art of

computing the same thing with different means. That sameness notion ought to be equivalence.

Unfortunately, in programming languages as well as proof assistants, the notion of sameness or

equality is appallingly syntactic. In dependently-typed languages that also serve as proof assistants,

equivalences can be stated and manually exploited, but they cannot be used as transparently and

conveniently as syntactic or propositional equality. The benefits we ought to get from having

equivalence as the primary notion of sameness include the possibility to state and prove results

about a data structure (or mathematical object) that is convenient to formally reason about, and then

automatically transport these results to other structures, for instance ones that are computationally

more efficient, albeit less convenient to reason about. Since the seminal work of Magaud and Bertot

∗
This work is partially funded by CONICYT FONDECYT Regular Project 1150017, CONICYT REDES Project 170067, ERC

Starting Grant CoqHoTT 637339 and Inria Équipe Associée GECO.

Authors’ addresses: Nicolas Tabareau, Gallinette Project-Team, Inria, Nantes, France; Éric Tanter, Computer Science

Department (DCC) - University of Chile, Santiago, Chile; Matthieu Sozeau, Pi.R2 Project-Team, Inria and IRIF, Paris, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART92

https://doi.org/10.1145/3236787

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

https://doi.org/10.1145/3236787
https://doi.org/10.1145/3236787
https://doi.org/10.1145/3236787

92:2 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

[2000] on translating proofs between different representations of natural numbers in Coq, there

has been a lot of work in this direction, motivated by both program verification and mechanized

mathematics, with several libraries available for either Isabelle/HOL [Huffman and Kunčar 2013] or

Coq [Cohen et al. 2013; Zimmermann and Herbelin 2015]. At their core, most of these approaches

build on parametricity [Reynolds 1983] and its potential for free theorems [Wadler 1989] in order

to obtain results such as data refinements for free [Cohen et al. 2013] and proofs for free [Bernardy

et al. 2012]. Despite these advances, exploiting equivalences between data structures in order to

automatically transport programs, theorems and proofs, remains an elusive objective. One of the

reasons, as we will demonstrate, is that parametricity is not strong enough to ensure preservation

of equivalences.

Univalence [Univalent Foundations Program 2013] is a new foundation for mathematics and

type theory that postulates that equivalence is equivalent to equality. Leaving aside the most

profound mathematical implications of Homotopy Type Theory (HoTT) and univalence, these new

foundations should fulfill the promise of automatic transport of programs, theorems, and proofs

across equivalences. It should be possible to transport a library that operates over a given type A to

an equivalent library that works with an equivalent type B, along with all its correctness guarantees.

Univalent transport in action. We illustrate the practical benefits of univalent transport with a

number of scenarios, which are not within reach of existing approaches. These examples are all

supported in our Coq library, which provides a univalent transport operator, hereafter noted ↑.

Consider the polymorphic signature of a size-indexed collection data type that exposes two

functions head and map, along with a simple correctness property: mapping a function f over the
collection and then taking the first element is the same as taking the first element and then applying

f to it. In Coq:

Record Lib (C : Type→ N→ Type) :=

{ head : ∀ {A : Type} {n : N}, C A (S n)→ A;

map : ∀ {A B} (f :A→ B) {n}, C A n→ C B n;

prop : ∀ n A B (f : A→ B) (v : C A (S n)), head (map f v) = f (head v)}.

We can implement such a collection library using standard size-indexed vectors:

Definition libvec : Lib Vector.t := {| head := Vector.hd;

map := Vector.map;

prop := libvec_prop |}.

where libvec_prop is the proof of prop, relating the specific head and map functions on vectors.

Assuming a type equivalence between indexed vectors and standard polymorphic lists refined

with a predicate on their length, univalence supports the automatic construction of an equivalent

library that operates on lists, together with the same correctness property. With our Coq library,

this new collection library could simply be obtained as follows:

Definition liblist: Lib (fun A n⇒ {l: list A & length l = n}) :=

↑ libvec.

This way, the user gets a library on lists that is usable out of the box, and correct by construction.

In particular, the proof of prop has been automatically converted to establish the property over lists.

Another application consists in using univalent transport to switch between easy-to-reason-

about and efficient representations, an approach known as data refinement [Cohen et al. 2013]. For

instance, it is possible to show that (inductive) natural numbers N and binary natural numbers N

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:3

are equivalent. We can then exploit this relation to automatically define the power function on N
by transporting the (efficient) power function on N:

Definition N_pow : N→ N→ N := ↑ N.pow.

This alternative definition can be orders of magnitude faster than the standard function on inductive

naturals. In fact, the only cost it incurs is to first convert the natural numbers to binary numbers, and

vice-versa on the result value—this conversion can be costly if the number is big. This shows that

the cost of transporting from one representation to another can be balanced when the computation

involved is much more efficient on one side.

From a software engineering point of view, univalent transport can also prove particularly helpful

whenever a sudden change in the representation of some part of a development seems required.

Suppose that in the middle of a large development that initially depends on the inductive version of

natural numbers, N, the programmer is faced with a stack overflow error in Coq that is traced back

to the use of N. In the current state of affairs, the most direct solution is to switch from N to binary

natural numbers N from the very beginning of the definitions. This unfortunately breaks all the

development, and the programmer then has to manually adapt all the definitions and proofs that

eventually rely on N in order to accommodate the binary representation. Alternatively, one can

refactor the development to use an abstract interface for numbers and apply the data refinement

approach of CoqEAL [Cohen et al. 2013]. This has the benefit of eventually being robust with

respect to potential future changes. But in both cases, a complete refactoring is needed.

Conversely, univalent transport allows the programmer to automatically lift all the on-going

development to use N, both in computationally-relevant parts and in parts that deal with reasoning

and formal properties, without any further manual intervention. Eventually, the programmer might

decide to proceed with a global refactoring of some sort, but she does not need to do so before

proceeding with the rest of the development.

Univalence and computation. The scenarios above assume that univalent transport is effective:

given a closed term of type P A, transport yields a closed term of type P B. However, in the

Calculus of Inductive Constructions (CIC) or Martin-Löf Type Theory, univalence is expressed as

an axiom [Univalent Foundations Program 2013]. The univalence axiom can be used in particular to

establish what we hereby call the Indiscernibility of Equivalents,
1
formally that A ≃ B implies that

P A ≃ P B, for any type constructor P . However, by the Curry-Howard correspondence, axioms

have no computational content, since they correspond to free variables. Therefore an axiomatic

general univalent transport is not effective. In concrete terms, this means that using axiomatic

univalent transport will yield a “stuck term”, stuck at the use of the axiom.

Since the advent of HoTT and the univalence axiom, several attempts have been made to build a

dependent type theory with a computational account of univalence, most notably with work on

cubical type theory (CubicalTT) [Altenkirch and Kaposi 2017; Cohen et al. 2016]. Such an approach

aims at making univalence an inherent, universal property of the system, i.e. demanding that all

constructions of the type theory be compatible with univalence.

Complementary to such a “clean slate” approach, there is much to gain in studying how to address

the computational effectiveness of univalent transport while staying within CIC. In particular,

this allows existing proof assistants such as Coq—and the vast amount of developments in these

systems—to directly benefit from advances in this regard, while contributing to the general research

question of the computational content of univalence.

1
Akin to the indiscernibility of identicals a.k.a. Leibniz’s Law. To the best of our knowledge, the notion of indiscernibility of

equivalents was introduced, in a different context, by the philosopher and logician Bacon [Bacon 1974].

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:4 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

Contributions. The main contribution of this work is to recognize that, while univalence cannot

be generally given computational content in CIC, we can support effective univalent transport for

a very large subset of CIC terms, covering most practical needs when considering programming

activities. Rather than considering univalence as a universal property, we describe univalence as an

ad-hoc property of the type constructors of the theory, defined as a strengthening of parametric-

ity [Reynolds 1983] coined univalent parametricity. By supporting the justification of univalent

parametricity per type constructors, we can, on a case-by-case basis, avoid using axioms altogether,

or at least push the use of axioms out of the computationally-relevant parts, hence supporting

effective univalent transport for a large class of programs.
2
More precisely:

• We introduce univalent parametricity as a strengthening of parametricity to ensure preserva-

tion of equivalences (§ 3).

• We provide a logical relation for univalent parametricity defined over type constructors

(§ 3.1). The principle of indiscernibility of equivalents for a type constructor amounts to the

fundamental property of this logical relation (§ 3.2). We prove that each type constructor of

the Calculus of Constructions with universes CCω is univalently parametric, identifying in

each case the necessary assumptions (§ 3.3).

• We also define univalent parametricity through a translation in the style of Bernardy et al.

[2012], which allows us to prove an abstraction theorem that entails that all terms of CCω
are univalently parametric (§ 3.4).

• We extend univalent parametricity from CCω to CIC by dealing with inductive types (§ 4).

• The logical relation for univalent parametricity serves as the foundation for an ad-hoc

realization of univalent parametricity in Coq with type classes [Sozeau and Oury 2008],

which is readily applicable to existing Coq developments, such as our introductory example

(§ 5).

• We study the impact of the use of axioms in parts of proofs of univalent parametricity on the

effectiveness of the induced univalent transport (§ 6). We show how to exploit the ad-hoc

setting to maximize transport in specific situations through specialized type class instances.

Finally we identify a useful fragment of CIC for which univalent transport is guaranteed to

be effective.

The technical content of this work is fully formalized and proven in Coq (v8.7), including the

translation and its properties, the type class framework and its instances, as well as the examples.

The Coq source files are available online at: https://coqhott.github.io/univalent_parametricity/.

Section 2 provides more precise background on type equivalence, univalence and parametricity

in the context of dependent type theories. Section 7 discusses related work and Section 8 concludes.

2 TYPE EQUIVALENCE, UNIVALENCE, AND PARAMETRICITY
We briefly review the notions of type equivalence, univalence, and parametricity in the context

of dependent type theories, highlighting the challenges that lead us to the notion of univalent

parametricity.

2.1 Type Equivalence
A function f : A→ B is an equivalence iff there exists a functionд : B → A together with proofs that

f and д are inverse of each other. More precisely, the section property states that ∀a : A,д(f (a)) = a,
and the retraction property dually states that ∀b : B, f (д(b)) = b. An additional condition between

2
We cannot provide an axiom-free definition of all type constructors, because this would amount to proving that the

univalence axiom is (constructively) admissible in CIC, which is not possible. Indeed, the univalence axiom is independent

from CIC, as shown for instance by Boulier et al. [2017] using a syntactic translation.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

https://coqhott.github.io/univalent_parametricity/

Equivalences for Free 92:5

the section and the retraction, called here the adjunction condition, expresses that the equivalence

is uniquely determined by the function f —and hence that being an equivalence is proof irrelevant.

Definition 2.1 (Type equivalence). Two types A and B are equivalent, noted A ≃ B, iff there exists

a function f : A→ B that is an equivalence.

A type equivalence therefore consists of two transport functions (i.e. f and д), as well as three
properties. The transport functions are obviously computationally relevant, because they actually

construct values of one type based on values of the other type. Note that from a computational

point of view, there might be different ways to witness the equivalence between two types, which

would yield different transports.

Armed with a type equivalence A ≃ B, one can therefore manually port a library that uses A to a

library that uses B, by using the A→ B function in covariant positions and the B → A function in

contravariant positions. However, with type dependencies, all uses of transport at the value level

can leak at the type level, requiring the use of sections or retractions to deal with type mismatches.

As a result, transporting even a simple library like the one presented in Section 1 quickly yields to

disaster; one desperately wishes for an automatic, general transport mechanism.

This also means that while the properties of an equivalence are not used computationally for

rewriting from A to B or vice versa, their computational content can matter when one wants to

exploit the equivalence of constructors that are indexed by A or by B. For instance, to establish that

a term of type T (д(f (a)) actually has type T a, one needs to rewrite the term using the section of

the equivalence—which means applying it as a (computationally-relevant) function.

2.2 Univalence
The (seemingly) magical potion for automatic transport is univalence.

Definition 2.2 (Univalence). For any two types A, B, the canonical map (A = B) → (A ≃ B) is an
equivalence.

In particular, this means that (A = B) ≃ (A ≃ B). By aligning type equivalence with propositional

equality, univalence allows us to generalize Leibniz’s principle of indiscernibility of identicals, to

what we call the principle of Indiscernibility of Equivalents.

Theorem 2.3 (Indiscernibility of Eqivalents). For any P : Type→ Type, and any two types

A and B such that A ≃ B, we have P A ≃ P B.

Proof. Direct using univalence: A ≃ B =⇒ A = B =⇒ P A = P B =⇒ P A ≃ P B □

In particular, univalence promises immediate transport for all. If A and B are equivalent, then we

can always convert some P A to some (equivalent) P B, i.e.:

Corollary 2.4 (Univalent Transport). For any P : Type→ Type, and any two types A and B
such that A ≃ B, there exists a function ↑ : P A→ P B.

There is a catch, however. Formally, univalence cannot be defined constructively in CIC and is

therefore defined as an axiom. Because the proof of Theorem 2.3 starts by using the univalence

axiom to replace type equivalence with propositional equality, before proceeding trivially with

rewriting, it has no computational content, and hence we cannot exploit (axiomatic) univalence to

reap the benefits of automatic transport of programs and their properties across equivalent types.

It is important for transport to be effective, i.e. that it has computational content.

Intuitively, an effective function ensures canonicity: it never gets stuck due to the use of an axiom.

Conversely, a function that uses an axiom and hence “does not compute” is called ineffective. By

extension, a type equivalence A ≃ B consisting of two functions f : A→ B and д : B → A is said to

be effective iff both f and д are effective functions.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:6 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

2.3 Towards Effective Univalent Transport
HoTT and univalence advocate that type equivalence is the adequate semantic notion of equality

on types. As we have seen, from a practical point of view, we want type constructors to preserve

equivalences and we want to establish such a compatibility in a constructive manner so as to obtain

an automatic transport that is effective.

As a matter of fact, it is feasible to prove, without using the univalence axiom, that many type

constructors preserve equivalences. For instance it is not hard to prove effectively that if A ≃ B,
then List A ≃ List B. The HoTT library for Coq does provide such compatibility lemmas for

many type constructors [Bauer et al. 2017]. For instance, for the dependent function and pair types,

the following lemmas are proven:

Definition equiv_functor_∀ : ∀ A B (P : A→ Type) (Q : B→ Type)

(e : A ≃ B) (e' : ∀ b, P (↑b) ≃ Q b), (∀ a, P a) ≃ (∀ b, Q b).

Definition equiv_functor_Σ : ∀ A B (P : A→ Type) (Q : B→ Type)

(e : A ≃ B) (e' : ∀ a, P a ≃ Q (↑a)), (Σ a, P a) ≃ (Σ a, Q a).

Such lemmas are sufficient to automatically derive an effective definition of the head function
that operates on lists-with-length given the head function on vectors. However, they are not really

sufficient to deal with more complex dependencies. The source of the problem is that the above

lemmas necessarily use transport explicitly in order to be able to state their equivalence premises

(observe the type of e' in the definitions above).

To illustrate the issue, consider the Lib record type from Section 1, for which we want to prove:

Lib Vector.t ≃ Lib (fun A n⇒ {l: list A & length l = n})

Recall that records are simply nested dependent pairs. By exploiting the functoriality of the depen-

dent function and pair types with respect to equivalence, equiv_functor_Σ and equiv_functor_∀,
for the property prop relating head and map, the transports cascade and we end up having to prove

the following goal:

∀ n A B (f : A→ B) (l : {l:list A & length l = S n}),

(head (map f ↑l) = f (head ↑l)) ≃ (↑head (↑map f l) = f (↑head l))

It is now natural to try to apply the functoriality of propositional equality, defined as:

Definition equiv_eq : ∀ A B (e : A ≃ B) (x y : A), (x = y) ≃ (↑x = ↑y).

However, because of all the occurrences of transport, our goal does not match the structure of

that result. We first need to apply lemmas regarding the commutativity of transport in order to

massage the goal such that it has the proper shape to apply equiv_eq. More generally, because of

their use of transport in premises, applying the functoriality lemmas from the HoTT library yields

an abundance of occurrences of transport in hard-to-predict places. This implies potentially costly

back-and-forth conversions that could be avoided, and makes full automatization very hard, if not

impossible. Therefore, while the HoTT library shows that it is possible to obtain effective transport,

the approach does not scale up to automation because of “the transport hell”.

Escaping the transport hell. Looking back at the functoriality lemmas equiv_functor_∀ and
equiv_functor_Σ, we observe that the difficulty arises because one cannot directly relate the

indexed types P and Q. This is because a) they have different types, namelyA→ Type and B → Type,

and b) type equivalence is only defined at Type. This forces the premises of these lemmas (e') to be

stated extensionally, using transport on one (arbitrary!) side so that the types match.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:7

[[Typei]]p A B ≜ A→ B → Typei

[[Πa : A.B]]p f д ≜ Π(a : A) (a′ : A′) (e : [[A]]p a a
′).[[B]]p (f a) (д a′)

[[x]]p ≜ xr

[[λx : A.t]]p ≜ λ(x : A) (x ′ : A′) (xr : [[A]]p x x ′).[[t]]p

[[t u]]p ≜ [[t]]p u u ′ [[u]]p

[[·]]p ≜ ·

[[Γ,x : A]]p ≜ [[Γ]]p ,x : A,x ′ : A′,xr : [[A]]p x x ′

Fig. 1. Parametricity translation for CCω (from [Bernardy et al. 2012])

This analysis tells us that using an heterogeneous relation, i.e. a relation between terms of different

types, could allow us to side-step the need for explicit transport in premises and hence avoid an

abundance of occurrences of transport. This is reminiscent of howMcBride’s heterogeneous equality

simplifies the formulation of Observational Type Theory [Altenkirch et al. 2007].

Furthermore, we see that we need equivalence to not only be defined at Type, but at least as well

at Type→ Type to be able to relate type constructors à la Fω as in our statement of Theorem 2.3.

As a matter of fact, we also need the relation to be defined at A→ Type in order to relate indexed

types. Actually, to be able to state that an indexed type takes related inputs to related outputs, we

need the relation to be defined at any type.

We are therefore looking for a uniform framework, based on an heterogeneous relation, that

would provide us with a powerful reasoning principle like the abstraction theorem of parametric-

ity [Reynolds 1983]. With parametricity, terms that are related to themselves are relationally

parametric; for functions, this means that they take related inputs to related outputs, similarly to

what we are after. As we describe next, Reynolds’ notion of parametricity, extended to dependent

type theories, is too weak to allow us to reason about preservation of equivalences. However,

as we will develop in Section 3 and beyond, we can strengthen parametricity to provide us with

“equivalences for free!”.

2.4 Parametricity for Dependent Types
Reynolds originally formulated the relational interpretation of types to establish parametricity

of System F [Reynolds 1983]. Recently, Bernardy et al. [2012] generalized the approach to pure

type systems, including the Calculus of Constructions with universes CCω , and its extension with

inductive types, the Calculus of Inductive Constructions CIC, which is at the core of proof assistants

like Coq. This section develops the approach in sufficient details to follow our proposal.

The syntax of CCω includes a hierarchy of universes Typei , variables, applications, lambda

expressions and dependent function types:

A,B,M,N ::= Typei | x | M N | λx : A.M | Πx : A. B

Its typing rules are standard, and hence omitted here—see Paulin-Mohring [2015] for a recent

presentation.

Parametricity for CCω can be defined as a logical relation [[A]]p for every type A. Specifically,
[[A]]p a1 a2 states that a1 and a2 are related at type A. The essence of the approach is to express

parametricity as a translation from terms to the expression of their relatedness within the same

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:8 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

theory; indeed, the expressiveness of CCω allows the logical relation to be stated in CCω itself.

Note that because terms and types live in the same world, [[−]]p is defined for every term.

Figure 1 presents the definition of [[−]]p for CCω , based on the work of Bernardy et al. [2012].

For the universe Typei , the translation is naturally defined as (arbitrary) binary relations on types.

For the dependent function type Πa : A.B, the translation specifies that related inputs at A, as
witnessed by e , yield related outputs at B. Note that, following Bernardy et al. [2012], the prime

notation (e.g. A′) denotes duplication with renaming, where each free variable x is replaced with x ′.
Similarly, the translation of a lambda term λx : A.t is a function that takes two arguments and a

witness xr that they are related; a variable x is translated to xr ; a translated application passes the

original argument, its renamed duplicate, along with its translation, which denotes the witness of

its self-relatedness. The translation of type environments follows the same augmentation pattern,

with duplication-renaming of each variable as well as the addition of the relational witness xr .
Armed with this translation, it is possible to prove an abstraction theorem à la Reynolds, saying

that a well-typed term is related to itself (more precisely, to its duplicated-renamed self):

Theorem 2.5 (Abstraction theorem). If Γ ⊢ t : A then [[Γ]]p ⊢ [[t]]p : [[A]]p t t
′
.

In particular, this means that the translation of a term [[t]]p is itself the proof that t is relationally
parametric.

The abstraction theorem is proven by showing the fundamental property of the logical relation

for each constructor of the theory. In particular, for the cumulative hierarchy of universes, ⊢ Typei :

Typei+1, this means that we have a kind of fixpoint property for the relation on Typei :

⊢ [[Typei]]p : [[Typei+1]]p Typei Typei .

For parametricity, this property holds because

λ(A B : Typei). Typei : Typei → Typei → Typei+1.

Note that this necessary fixpoint property is actually not trivial to satisfy in any variant of para-

metricity, as we will see in the next section.

The parametricity translation together with the abstraction theorem are powerful to derive free

theorems (and proofs) [Bernardy et al. 2012]. However, they are insufficient to ensure preservation

of equivalences. For example, for an arbitrary type constructor P : Typei → Typei , the fundamental

property tells us that the relation between two types A and B can be lifted to a relation between

P A and P B. However, even if we additionally assume that A and B are equivalent and that the

relation between A and B is given by

λ(a : A) (b : B). a =↑b,

we cannot freely conclude that P A and P B are themselves equivalent; indeed, we only know that

P A and P B are in relation, without any additional constraint on this relation. Similarly, in our Lib
example, we can show that Lib is related to itself, meaning it is relationally parametric, but that

does not imply that it preserves equivalences.

The main conceptual contribution of this work is to precisely identify how to strengthen the

parametricity relation to be able to deduce such equivalences, hence allowing automatization of

effective transport.

3 UNIVALENT PARAMETRICITY
This section develops our approach to univalent parametricity for CCω ; extension to CIC is in § 4.

We first define a univalent logical relation as a type-indexed logical relation on all the type

constructors of CCω (§ 3.1). A term is univalently parametric if it is related to itself; in particular,

we prove that univalently parametric constructors satisfy the Indiscernibility of Equivalents (§ 3.2).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:9

A ≈ B : Typei ▷◁ Typei ≜ A ▷◁ B ∧ A ≃ B

∧ ∀a : A,b : B, (a ≈ b : A ▷◁ B) ≃ (a = ↑b)

P ≈ Q : A→ Typei ▷◁ B → Typei ≜ A ▷◁ B

∧ ∀a : A,∀b : B,a ≈ b : A ▷◁ B =⇒ P a ≈ Q b : Typei ▷◁ Typei

f ≈ д : Πa : A.P a ▷◁ Πb : B.Q b ≜ P ≈ Q : A→ Typei ▷◁ B → Typei

∧ ∀a : A,∀b : B,a ≈ b : A ▷◁ B =⇒ f a ≈ д b : P a ▷◁ Q b

Fig. 2. Univalent relation for CCω

We discuss in § 3.3 the proofs that each type constructor is univalently parametric, paying attention

to the potential use of axioms.

To prove that all well-typed terms of CCω are univalently parametric requires a definition of the

relation that accommodates all terms of CCω , not just type constructors, including open terms. To

do so, § 3.4 presents a translation for univalent parametricity in the style of Bernardy et al. [Bernardy

et al. 2012]. For type constructors, the translation appeals to proof terms introduced in § 3.3.

Note that we present both descriptions of univalent parametricity because of their complementar-

ity. The translation gives us an abstraction theorem and the general fundamental property for CCω .

The univalent logical relation on type constructors allows us to relate terms of completely different

types, such as inductively-defined and binary-encoded naturals. This is important because we want

to be able to let programmers define their own equivalences. Additionally, the Coq formalization of

the translation is based on a deep embedding, while the univalent logical relation is internalized

directly through the type class system of Coq, hence bringing all the facilities of our approach to

existing Coq developments (§ 5 and § 6).

3.1 Univalent Logical Relation
To strengthen parametricity to deal with equivalences, we need to strengthen the parametricity

logical relation on the universe Typei . Several intuitive solutions come to mind, which however

are not satisfactory.

First, we could simply replace the heterogeneous relation demanded by parametricity to be

type equivalence itself, i.e. [[Typei]]u A B ≜ A ≃ B. However, by doing so, the abstraction

theorem fails on ⊢ Typei : Typei+1. We would need to establish the fixpoint on the universe,

i.e. [[Typei]]u : [[Typei+1]]u Typei Typei , but we have

[[Typei]]u : Typei → Typei → Typei+1 , Typei ≃ Typei .

In words, on the left-hand side we have an arbitrary relation on Typei , while on the right-hand

side, we have an equivalence.

Another intuitive approach is to state that [[Typei]]u A B requires both an heterogeneous relation

on A and B and an equivalence between A and B. While this goes in the right direction, it is

insufficient because there is no connection between the two notions. This in particular implies that,

when scaling up from CCω to CIC, the identity type—which defines the notion of equality—will not

satisfy the fundamental property of the logical relation. We need to additionally demand that the

heterogeneous relation coincides with propositional equality once the values are at the same type.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:10 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

Formally, we introduce a logical relation for univalent parametricity, called the univalent relation,

defined in Figure 2 and noted x ≈ y : X ▷◁ Y , which relates two terms x and y of possibly different

types X and Y , and is defined over all the type constructors of CCω .
3
We write simply X ▷◁ Y to

specify that the univalent relation is defined between X and Y , i.e. · ≈ · : X ▷◁ Y is defined.

At Typei , the univalent relation A ≈ B : Typei ▷◁ Typei requires both A ▷◁ B and A ≃ B,
as well as a coherence condition between the heterogeneous relation and equality. This (crucial!)

condition stipulates that the heterogeneous relation does coincide with propositional equality up

to a transport using the equivalence, i.e.:

(a ≈ b : A ▷◁ B) ≃ (a = ↑b)

Note that the use of transport on one (arbitrary) side breaks the symmetry of the definition, in the

same way as the Coq HoTT library functoriality lemmas such as equiv_functor_∀ do (§ 2.3). The

fundamental difference is that in our approach, this arbitrary choice is deferred as late as possible,

i.e. when we do need to know more about the univalent relation.

As alluded to above, the coherence condition is used in particular in the proof that the identity

type is related to itself. In that case, we need to prove that

∀A B : Type, ∀a a′ : A, ∀ b b ′ : B′,
a ≈ b : A ▷◁ B ∧ a′ ≈ b ′ : A ▷◁ B =⇒ a = a′ ≃ b = b ′

which is possible only if we know that related inputs are equal up to transport.

Consequently, to establish a univalent relation between two types, it is not enough to exhibit

an arbitrary relation; one also needs to prove that both types are equivalent, and that the relation

satisfies the coherence condition.

On the other type constructors, the univalent logical relation is similar to parametricity. In

particular, at type families A → Typei and B → Typei , the univalent relation says that A and B
must be related and that for every related input, the applied type families must be related at Typei .

In the same way, at dependent function types Πa : A.P a and Πb : B.Q b, the univalent relation
says that type families P and Q must be related and that for every related indices a and b, we get
related outputs at P a and Q b.

3.2 Univalent Parametricity and Indiscernibility of Equivalents
Univalently parametric terms are those “in the diagonal” of the univalent relation, i.e. that are

related to themselves.

Definition 3.1 (Univalent parametricity). Let x : X , we say that x is univalently parametric, or

simply univalent, notation Univ(x), iff x ≈ x : X ▷◁ X .

Using the univalent relation presented above, we cannot establish its fundamental property

(namely, that all well-typed CCω terms are univalently parametric); we will do so in § 3.4 using a

translation. But we can already state and prove an important property: that a univalently parametric

type constructor preserves type equivalences.

Proposition 3.2 (Univalent constructor preserves eqivalences). Let P : Typei → Typei
be a univalently parametric constructor, i.e. Univ(P), then for all A,B : Typei , A ≃ B =⇒ P A ≃ P B.

Proof. If we unfold the definition, Univ(P) A B means that

A ≈ B : Typei ▷◁ Typei =⇒ P A ≈ P B : Typei ▷◁ Typei

3
Note that the domain of the logical relation is expressible in CIC.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:11

We only have A ≃ B but we need to establish that A and B are univalently related, which requires

more structure: we need to exhibit a relation betweenA and B that satisfies the coherence condition.

We use the canonical heterogeneous relation

λ(a : A) (b : B).a =↑b

which trivially satisfies the coherence condition. Therefore, P A ≈ P B : Typei ▷◁ Typei , which in

particular means that P A ≃ P B. □

3.3 Type Constructors are Univalently Parametric
We now prove that the universe Typei and the dependent function type Π are univalent.

3.3.1 Type. Univ(Typei) corresponds to the fixpoint property on the universe of the logical

relation, and requires the univalence axiom to be valid in CIC.

Proposition 3.3. Univ(Typei) is inhabited.

Proof. First, we need to define a relation between Typei and Typei . By a fixpoint argument, it

has to be Typei ▷◁ Typei . We also need to provide an equivalence Typei ≃ Typei ; we simply take

the identity equivalence idTypei . Finally, we need to prove that the relation is coherent with equality,

that is, we need to exhibit a term univTypei such that:

univTypei : ΠA B. (A ≈ B : Typei ▷◁ Typei) ≃ (A = B)

For the function from A = B to A ≈ B : Typei ▷◁ Typei , by induction on equality, it is sufficient

to provide the canonical inhabitant canon(idA) : A ≈ A : Typei ▷◁ Typei associated to the identity

equivalence, as used in the proof of Proposition 3.2.

The rest of the proof makes use of univalence and in particular of the section and the retraction

of the equivalence postulated by the univalence axiom, together with lemmas about decomposition

of equality over Typei ▷◁ Typei and commutation of transports; the interested reader can consult

the Coq development. As it uses the univalence axiom in its section and retraction, this equivalence

is not entirely effective. □

3.3.2 Prop. In our definition, Prop is treated in the same way as Typei because Prop : Typei is

a universe also enjoying the univalence axiom. The only specificity of Prop is its impredicativity,

which does not play a role here.

Proposition 3.4. Univ(Prop) is inhabited.

Proof. Special case of the fact that Univ(Typei) is inhabited. □

It is also possible to state a stronger axiom on Prop called propositional extensionality, which

uses logical equivalences instead of type equivalences in its statement:

(P = Q) ≃ (P ⇐⇒ Q).

This axiom can not be deduced from univalence alone, one would need proof irrelevance for Prop

as well. As we are looking for the minimal amount of axioms needed for establishing univalent

parametricity, we do not make use of this stronger axiom.

Note that exploiting the fact that Prop is proof irrelevant, Prop ▷◁ Prop boils down to

A ▷◁ B ∧ A⇐⇒ B ∧ ∀a : A,b : B, IsContr(a ≈ b : A ▷◁ B).

where IsContrA says thatA is contractible, i.e. has a unique inhabitant. This is because for all a and
b, the type (a = ↑b) is contractible and being equivalent to a contractible type is the same as being

contractible. The definition we obtain in this case coincides with the definition of parametricity

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:12 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

with uniformity of propositions, recently developed by Anand and Morrisset [Anand and Morrisett

2017] (more details in § 7).

3.3.3 Dependent Function Type. We now show that the dependent function type is univalently

parametric. This result requires functional extensionality, i.e. the fact that the canonical map

f = д → Π(x : A). f x = д x

is an equivalence. This property is a consequence of univalence [Univalent Foundations Program

2013].

Proposition 3.5. Univ(Π) is inhabited.

Proof. Univ(Π) A B P Q unfolds to

A ≈ B : Typei ▷◁ Typei → P ≈ Q : A→ Typei ▷◁ B → Typei

→ Π(a : A). P a ≈ Π(b : B). Q b : Typei ▷◁ Typei

First, we need to define a relation between Π(a : A). P a and Π(b : B). Q b. This is of course the
definition of Π(a : A). P a ▷◁ Π(b : B). Q b as given in Figure 2.

Next, we need to show that Π(a : A). P a ≃ Π(b : B). Q b knowing that A ≃ B and Π(a : A) (b :

B).a ≈ b : A ▷◁ B → P a ≃ Q b. Using the equivalence between a ≈ b : A ▷◁ B and a =↑b, this boils
down to Π(a : A). P a ≃ Q (↑a).
At this point we can apply a standard result of HoTT, namely equiv_functor_∀ in the Coq

HoTT library [Bauer et al. 2017], which was already introduced in § 2.3. This lemma requires

functional extensionality in the proof that the two transport functions form an equivalence.
4

We note the resulting term EquivΠ , with:

EquivΠ : ΠA B P Q . A ≃ B →

(Π(a : A) (b : B).a ≈ b : A ▷◁ B → P a ≃ Q b) →

Π(a : A). P a ≃ Π(b : B). Q b

The proof that the relation is coherent with equality is the novel part required by univalent

parametricity. This means that we need to define a term

univΠ : Π f д.(f ≈ д : Πa : A. P a ▷◁ Πb : B. Q b) ≃ (f = ↑д)

This part is quite involved as it is exactly where we show that transporting in many hard-to-predict

places is equivalent to transporting only at the top level, thereby avoiding the transport hell (§ 2.3).

This is done by repeated use of commutativity lemmas of transport of equality over functions.

Again, the interested reader can consult the Coq development. □

3.4 Univalent Parametricity Translation
Proving the general fundamental theorem of univalent parametricity requires an induction on the

whole syntax of CCω , including variables, application and lambda expressions, and is therefore

better handled by a translation in the style of Bernardy et al. (recall Figure 1 of § 2.4). Figure 3

shows how to extend the relational parametricity translation to force the heterogeneous relation

defined between two types to correspond to a type equivalence with the coherence condition. Note

that the translation does not target CCω but rather CICu , which is CIC plus the univalence axiom.

We note Γ ⊢u t : T to stipulate that the term is typeable in CICu .

4
The definition of the inverse function requires using the retraction, and the proof that it forms a proper equivalence requires

the adjunction condition (§ 2.1). This means that the dependent function type would not be univalent if we replaced type

equivalence with a simpler notion, such as the possibility to go from one type to another and back, or even by isomorphisms.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:13

[Typei]u ≜ (λ (A B : Typei), Σ(R : A→ B → Typei) (e : A ≃ B).

Πab .(R a b) ≃ (a =↑b); idTypei ; univTypei)

[Πa : A.B]u ≜ (λ (f д : Πa : A.B), Π(a : A) (a′ : A′) (ar : [[A]]u a a′).

[[B]]u (f a) (д a′); EquivΠ [[A]]
eq
u [[B]]

eq
u ; univΠ)

[x]u ≜ xr

[λx : A.t]u ≜ λ(x : A) (x ′ : A′) (xr : [[A]]u x x ′).[t]u

[t u]u ≜ [t]u u u ′ [u]u

[[A]]u ≜ [A]u .1 [[A]]
eq
u ≜ [A]u .2 [[A]]cohu ≜ [A]u .3

[[·]]u ≜ ·

[[Γ,x : A]]u ≜ [[Γ]]u ,x : A, x ′ : A′, xr : [[A]]u x x ′

Fig. 3. Univalent parametricity translation for CCω

The definition of the translation of a type A is more complex than that of Figure 1 because in

addition to the relation [[A]]u , we need an equivalence [[A]]
eq
u and a witness [[A]]cohu that the relation

is coherent with equality.

As explained in § 3.1, for Typei , following Figure 2 but switching to the type theoretical notation,

we want to set
5
:

[[Typei]]u A B ≜ Σ(R : A→ B → Typei) (e : A ≃ B).

Πa b .(R a b) ≃ (a =↑b).

That is, the translation of a type (when seen as a term) needs to include the parametricity relation

plus the fact that there is an equivalence, and that the relation is coherent with equality. It is thus a

dependent 3-tuple,
6
as explicit in Figure 3.

We therefore need to distinguish between the translation of a typeT occurring in a term position

(i.e. left of the “:”), translated as [T]u and the translation of a type T occurring in a type position

(i.e. right of the “:”), translated as [[T]]u .
7
The fundamental property on Typei enforces the definition

of the relation, equivalence and coherence on a type T to be deduced from [T]u respectively as

[[A]]u ≜ [A]u .1 [[A]]
eq
u ≜ [A]u .2 [[A]]cohu ≜ [A]u .3

The 3-tuples for Typei and dependent function type are precisely given by the fact that they are

in the diagonal of the univalent relation, as proved in § 3.3. In particular, the terms univTypei and
univΠ used in the translation have been described in Proposition 3.3 and Proposition 3.5. Note that

5
The notation Σa : A. B is a dependent pair, defined in CIC as an inductive type.

6
We introduce syntactic sugar t = (a;b ; c) with accessors t .1 t .2 and t .3 for nested pairs to ease the reading.

7
The possibility to distinguish the translation of a type on the left and right-hand side of a judgment has already been noticed

for other translations that add extra information to types by Boulier et al. [2017]. For instance, to prove the independence of

univalence with CIC, they use a translation that associates a Boolean to any type, e.g. [Typei] = (Typei × B, true). Then a

type on the left-hand side is translated as a 2-tuple and [[A]] = [A].1. This possibility to add additional information in the

translation of a type comes from the fact that types in CIC can only be “observed” through inhabitance, that is, in a type

position; therefore, the translation in term positions may collect additional information.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:14 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

they make implicit use of [[A]]cohu , which explains why this part of the translation is not directly

visible in Figure 3.

For the other terms, the translation does not change with respect to parametricity except that

[[−]]u must be used accordingly when we are denoting the relation induced by the translation and

not the translation itself.

We can now derive the abstraction theorem of univalent parametricity.

Theorem 3.6 (Abstraction theorem). If Γ ⊢ t : A then [[Γ]]u ⊢u [t]u : [[A]]u t t ′.

Proof. The proof is a straightforward induction on the typing derivation. The interested reader

can consult the Coq development. □

Actually, we are more interested in the corollary that states that every term of CCω is univalently

parametric.

Corollary 3.7 (Fundamental property). If ⊢ a : A then Univ(a).

Proof. For a closed term, we have [[A]]u ≡ A ▷◁ A and a = a′, so by the abstraction theorem,

[a]u : a ≈ a : A ▷◁ A. □

Finally, note that although the translation for dependent function types is defined for two terms

a and a′ of respective types A and A′, A′ is not any arbitrary type: it is the result of duplication

with renaming applied to A (§ 2.4); likewise, a′ is a renamed duplicate of a. Additionally, a and

a′ are expected to be related according to the interpretation of the single type A. This is why the

univalent logical relation of Figure 2 is more general than the univalent parametricity translation: it

can describe relations between terms of arbitrarily different types, as long as some equivalence can

be exhibited. For instance, we can relate naturals N and binary naturals N, i.e. N ≈ N : Type ▷◁ Type.

4 UNIVALENT PARAMETRICITY AND INDUCTIVE TYPES
CIC is an extension of CCω that allows for the definition of inductive types in the theory. An

inductive type is defined as a new type constructor, together with associated constructors and an

elimination principle.
8
For instance, the inductive type of lists is

9

Inductive list (A : Type) : Type :=

nil : list A

| cons : A→ list A→ list A

where nil and cons are the constructors of the inductive type. The associated eliminator is

list_rect : ∀ (A : Type) (P : list A→ Type), P nil→ (∀ (a : A) (l : list A), P l→ P (a :: l))

→ ∀ l : list A, P l.

To prove that a given inductive type I (with constructors I_ci and elimination I_rect) is univalent—
and thus being able to extend the abstraction theorem of CCω—one needs to prove Univ(I),
Univ(I_ci) and Univ(I_rect).
We proceed step-by-step, considering first dependent pairs (§ 4.1), then records (§ 4.2), param-

eterized recursive inductive families (§ 4.3), and finally indexed inductive types (§ 4.4). Proofs

of univalent parametricity for inductives do not require using axioms, however they potentially

propagate the axioms used in the equivalence proofs of their parameters and indices. We discuss

practical strategies to achieve effectiveness in § 6.

8
There is an equivalent presentation of inductive types with pattern matching instead of eliminators. In Coq, eliminators

are automatically inferred and defined using pattern matching.

9
In this section, to ease the reading, we navigate between the syntax of CIC and the one of Coq when appropriate.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:15

p ≈ q : Σa : A.P a ▷◁ Σb : B.Q b ≜ P ≈ Q : A→ Type ▷◁ B → Type

∧ p.1 ≈ q.1 : A ▷◁ B ∧ p.2 ≈ q.2 : P p.1 ▷◁ Q q.1

Fig. 4. Univalent relation for dependent pairs

4.1 Dependent Pairs
In CIC, dependent pairs are defined as the inductive family:

Inductive sigT (A : Type) (B : A→ Type) : Type :=

existT : ∀ x : A, B x→ {x : A & B x}.

Thus, the unique constructor of a dependent pair is existT and the elimination principle is given

by

sigT_rect : ∀ (A : Type) (P : A→ Type) (P0 : sigT A P→ Type),

(∀ (x : A) (p : P x), P0 (x; p))→ ∀ s : sigT A P, P0 s

As common, we use the notation Σa : A. B to denote sigT A (fun a⇒ B), similarly to dependent

type theories where pair types are part of the syntax [Martin-Löf 1971].

The univalent relation between Σa : A. P a and Σb : B. Q b is defined in Figure 4. It naturally

requires the type families P and Q , as well as the first and second elements of the pair, to be related

at the corresponding types.

Proposition 4.1. Univ(Σ) is inhabited.

Note that the last equivalence used in the proof, namely that

(Σp : x .1 =↑y.1 . x .2 =↑y.2) ≃ (x = ↑y)

is the counterpart of functional extensionality for dependent function types. The main difference is

that this equivalence is effective as it can be proven by elimination of dependent pairs.

The proofs that the constructor existT and the eliminator sigT_rect are univalently parametric

are direct by induction on the structure of a dependent pair type.

4.2 Dependent Records
Let us go back to the example of the Lib record type

Record Lib (C : Type→ N→ Type) :=

{ head : ∀ {A : Type} {n : N}, C A (S n)→ A;

map : ∀ {A B} (f :A→ B) {n}, C A n→ C B n;

prop : ∀ n A B (f : A→ B) (v : C A (S n)), head (map f v) = f (head v)}.

Like all record types, Lib can be formulated in terms of nested dependent sums. This means that,

for any C : Type→ N→ Type, Lib C is equivalent to

Lib' C := Σ (hd : ∀ A n. C A (S n)→ A).

Σ (map : ∀ A B (f:A→ B) n, C A n→ C B n).

∀ n A B (f : A→ B) (v : C A (S n)), hd (map f v) = f (hd v).

The fact that Lib' is univalent directly follows from the abstraction theorem of CCω extended

with dependent sums. To conclude that Lib is univalent, we use the fact that a type family equivalent

to a univalent type family is itself univalent.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:16 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

Proposition 4.2. Let X : Typei , A B : X → Typej , and x y : X such that X ≈ X , x ≈ y, and
A x ≈ Ay. If ∀x ,B x ≃ A x then B x ≈ B y.

Proof. Follows from the fact that, for all types A B C , we have A ≈ B ∧ B ≃ C =⇒ A ≈ C . □

This approach to establish the univalence of a record type via its encoding with dependent sums

can be extended to any record type. We do not present here the generalized version, but we have

automatized this principle in our Coq framework as a tactic, by reusing an idea used in the HoTT

library [Bauer et al. 2017] that allows automated inference of type equivalence for records with

their nested pair types formulation. This tactic can be used to automatically prove that a given

record type is univalently parametric (provided its fields are).

4.3 Parameterized Recursive Inductive Families
To establish the univalent parametricity of a parameterless recursive inductive type I , such as

natural numbers with zero and successor, we can simply use the canonical structure over the

identity equivalence, with equality as univalent relation and trivial coherence: canon(Equiv_id I :
I ≃ I) : Univ(I).

However, whenever an inductive type has parameters, the situation is more complex.
10
Let us

develop the case of lists. First, we need to show that

Π(A B : Typei). (A ≃ B) → (list A ≃ list B).

The two transport functions of the equivalence list A ≃ list B can be defined by induction on

the structure of the list (i.e. using the eliminator list_rect). They both simply correspond to the

usual map operation on lists. The proof of the section and retraction are also direct by induction on

the structure of the list, and transporting along the section and retraction of A ≃ B.
The univalent relation on lists is given directly by parametricity. Indeed, following the work

of Bernardy et al. on the inductive-style translation [Bernardy et al. 2012], the inductive type

corresponding to the lifting of a relation between A and B to a relation between list A and list B
is given by:

Inductive UR_list A B (R : A→ B→ Type) : list A→ list B→ Type :=

UR_list_nil : UR_list R nil nil

| UR_list_cons : ∀ a b l l', (R a b)→ (UR_list R l l')→ UR_list R (a::l) (b::l').

This definition captures the fact that two lists are related if they are of the same length and

pointwise-related. Then, the univalent relation is given by

l ≈ l ′ : list A ▷◁ list B ≜ UR_list A B (A ▷◁ B)

Similarly to dependent pairs, the proof that the relation is coherent with equality relies on the

following decomposition of equality between lists:

Π A B (e : A ≃ B) l l ′. (UR_list A B (λ a b .a = ↑b) l l ′) ≃ (l = ↑l ′).

Indeed, using this lemma, the coherence of the univalent relation with equality is easy to infer:

(l ≈ l ′) ≡ UR_list A B (A ▷◁ B) ≃ (UR_list A B (λ a b .a = ↑b) l l ′) ≃ (l = ↑l ′)

10
In this work the distinction between parameters and indices for inductive types is important. A parameter is merely

indicative that the type behaves uniformly with respect to the supplied argument. For instance A in list A is a parameter.

Thus the choice of A only affects the type of elements inside the list, not its shape. In particular, by knowing A for a given
list, we cannot infer which constructor was used to construct that list. On the other hand, by knowing the value of an

index, one can infer which constructor(s) may or may not have been used to create the value. For instance, a value of type

Vect A 0 is necessarily the empty vector.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:17

Note that it is always valid to decompose equality on inductive types. This is because values

of an inductive type can only be observed by analyzing which constructor was used to build the

value. This fact is explicitly captured by the elimination principle of an inductive type. On the

contrary, for dependent products, the fact that functions can only be observed through application

to a term is implicit in CIC, i.e. there is no corresponding elimination principle in the theory (hence

functional extensionality is an axiom).

The proofs that the constructors nil and cons are univalent are direct by definition of UR_List.
Likewise, the proof that the eliminator list_rect is univalent is direct by induction on UR_List.

Generalization. It is possible to generalize the above result developed for lists to any parameterized

inductive family, although a general proof is outside the scope of this paper. As illustrated above,

the univalent relation for parameterized inductive families is given by parametricity, and the proof

that related inputs give rise to equivalent types proceeds by a direct induction on the structure of

the type. The main difficulty is to generalize the proof of the coherence of the relation with equality.

Indeed, this involves fairly technical reasoning on equality and injectivity of constructors.

Fortunately, in practice in our Coq framework, a general construction is not required to handle

each new inductive type I , because a witness of the fact that a given inductive I is univalent can be

defined specifically as a typeclass instance. We also provide a tactic to automatically generate this

proof on any parameterized datatypes (up to a fixed number of constructors), depending on the

univalent parametricity of its parameters.

4.4 Indexed Inductive Families
CIC allows defining inductive types that are not only parameterized, but also indexed, like length-

indexed vectors VectorAn. Anothermainstream example is Generalized Algebraic Data Types [Pey-

ton Jones et al. 2006] (GADTs) illustrated here with the typical application to modeling typed

expressions:

Inductive Expr : Type→ Type :=

| I : N→ Expr N

| B : B→ Expr B

| Ad : Expr N→ Expr N→ Expr N

| Eq : Expr N→ Expr N→ Expr B.

Observe that the return types of constructors instantiate the inductive family at specific type indices,

instead of uniform type parameters as is the case for e.g. the parameterized list inductive type. This

specificity of constructors is exactly what makes GADTs interesting for certain applications; but

this is precisely why their univalent parametricity is ineffective!

Indeed, consider an equivalence between natural numbers N and binary natural numbers N.
Univalence of the Expr GADT means that Expr N is equivalent to Expr N. However, there is no
constructor for Expr that can produce a value of type Expr N. So the only way to obtain such a

term is by using an equality between N and N, that is, using the univalence axiom.
11

The challenge is that univalence for indexed inductive families relies on the coherence condition.

To better understand this point, let us study the prototypical case of identity types.

Identity types. In Coq, the identity type (or equality type) is defined as an indexed inductive

family with a single constructor eq_refl:

Inductive eq (A : Type) (x : A) : A→ Type := eq_refl : x = x.

11
It is however impossible to prove that no term of type Expr N can be constructed without univalence, because the

univalence axiom is compatible with CIC.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:18 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

The elimination principle eq_rect, known as path induction in HoTT terminology, is:

eq_rect : ∀ (A : Type) (x : A) (P : ∀ a : A, x = a→ Type), P x eq_refl→ ∀ (y : A) (e : x = y), P y e

Proposition 4.3. Univ(eq) is inhabited.

Proof. Univ(eq) unfolds to

Π (A B : Type) (a a′ : A) (b b ′ : B) (eAB : A ≈ B) (e : a ≈ b) (e ′ : a′ ≈ b ′), (a =A a′) ▷◁ (b =B b ′)

To prove that (a = a′) ≃ (b = b ′), it is first necessary to transform a ≈ b and a′ ≈ b ′ using
the fact that A ▷◁ B and hence that the relation is coherent with equality. After rewriting, the

equivalence to establish is

(a =A a′) ≃ (↑a=B↑a
′)

This equivalence is similar to a standard result of HoTT [Univalent Foundations Program 2013],

namely equiv_functor_eq in the Coq HoTT library [Bauer et al. 2017], which was already intro-

duced in § 2.3.

The univalent relation for identity types is defined using the inductive type that is obtained by

applying parametricity to the identity type:

Inductive UR_eq (A1 A2 : Type) (AR : A1 → A2 → Type) (x1 : A1) (x2 : A2) (xR : AR x1 x2) :

∀ (y1 : A1) (y2 : A2), AR y1 y2 → x1 = y1 → x2 = y2 → Type :=

UR_eq_refl : UR_eq A1 A2 AR x1 x2 xR x1 x2 xR eq_refl eq_refl.

The univalent relation is just a specialization of UR_eq where A_R is given by ≈ on A and B:

e1 ≈ e2 : a =A a′ ▷◁ b =B b ′ ≜ UR_eq A B ≈ a b e a′ b ′ e ′ e1 e2

Finally, proving that the relation is coherent with equality amounts to show that

Π(e1 e2 : a = a′). (e = e ′) ≃ UR_eq A B (A ▷◁ B) a b e a′ b ′ e ′ e1 ↑e2.

This can be done be first showing the following equivalence
12

UR_eq A B P x y H x ′ y ′ H ′ X Y ≃ (Y # (X #H) = H ′)

which means that the naturality square between H and H ′ commutes.

The proofs that eq_refl and eq_rect are univalent are direct by UR_eq_refl and elimination

of UR_eq. □

To deal with other indexed inductive types, one can follow a similar approach. Alternatively,

it is possible to exploit the correspondence between an indexed inductive family and a subset of

parameterized inductive family, established by Gambino and Hyland [2004], to prove the univalence

of an indexed inductive family. In this correspondence, the property of the subset type is obtained

from the identity type.

For instance, for vectors:

Vector A n ≃ Σ l : list A. length l = n

The length function computes the length of a list, as follows:

Definition length {A} (l: list A) : N := list_rect A (fun _⇒ N) 0 (fun _ l n⇒ S n) l

where one can observe that the semantics of the index in the different constructors of vec-

tors is captured in the use of the recursion principle list_rect. By the abstraction theorem,

Σ l : list A. length l = n is univalent, and thus by Proposition 4.2, so is Vect A n.

12
The notation e # t , with e : x = y and t : P x when P is clear from the context, denotes the transport of the term e

through the equality proof e (hence e # t : P y).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:19

5 UNIVALENT PARAMETRICITY IN COQ
The whole development of univalent parametricity exposed in this article has been formalized

in the Coq system [Coq Development Team 2016], reusing several constructions from the HoTT

library [Bauer et al. 2017]. We do not discuss the Coq formalization of the univalent parametricity

translation (§ 3.4) here; instead, we focus on the shallow embedding of the univalent relation

based on type class instances to define and automatically derive the univalence proofs of Coq

constructions. We first introduce the core classes of the framework (§ 5.1), and then describe the

instances for some type constructors (§ 5.2).

5.1 Coq Framework
The central notion at the heart of this work is that of type equivalences, which we formulate as a

type class to allow automatic inference of equivalences:
13

Class IsEquiv (A B : Type) (f:A→ B) := {

e_inv : B→ A ;

e_sect : ∀ x, (e_inv ◦ f) x = x;

e_retr : ∀ y, (f ◦ e_inv) y = y;

e_adj : ∀ x, e_retr (f x) = ap f (e_sect x) }.

The properties e_sect and e_retr express that e_inv is both the left and right inverse of f,
respectively. The property e_adj is a compatibility condition between the proofs. It ensures that

the equivalence is uniquely determined by the function f.
While IsEquiv characterizes a particular function f as being an equivalence, we say that two

types A and B are equivalent, noted A ≃ B, iff there exists such a function f .

Class Equiv A B := { e_fun :> A→ B ; e_isequiv : IsEquiv e_fun }.

Notation "A ≃ B" := (Equiv A B).

Equiv is here defined as a type class to allow automatic inference of equivalences. This way, we

can define automatic transport as

Definition univalent_transport {A B : Type} {e: A ≃ B} : A→ B := e_fun e.

Notation "↑" := univalent_transport.

where the equivalence is obtained through type class instance resolution, i.e. proof search.

To formalize univalent relations, we define a hierarchy of classes, starting from UR for univalent

relations (arbitrary heterogeneous relations), refined by UR_Coh, which additionally requires the

proof of coherence between a univalent relation and equality.

Class UR A B := { ur : A→ B→ Type }.

Notation "x ≈ y" := (ur x y) (at level 20).

Class UR_Coh A B (e : Equiv A B) (H: UR A B) := { ur_coh : ∀ (a a' : A), Equiv (a = a') (a ≈ ↑a') }.

The attentive reader will notice that the definition of the coherence condition above is dual to the

one stated in Figures 2 and 3. Both definitions are in fact equivalent.
14
The reason for adopting this

dual definition is that it eases the definition of new instances.

13
Adapted from: http://hott.github.io/HoTT/coqdoc-html/HoTT.Overture.html.

14
See lemma is_equiv_alt_ur_coh in the Coq development.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

http://hott.github.io/HoTT/coqdoc-html/HoTT.Overture.html

92:20 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

As presented in Figure 3, two types are related by the univalent parametricity relation if they

are equivalent and there is a coherent univalent relation between them. This is captured by the

typeclass UR_Type.

Class UR_Type A B := {

Ur :> UR A B;

equiv :> A ≃ B;

Ur_Coh:> UR_Coh A B equiv Ur;

Ur_CanA :> Canonical_eq A;

Ur_CanB :> Canonical_eq B }.

Infix "▷◁" := UR_Type.

(The last two attributes are part of the Coq framework in order to better support extensibility and

effectiveness, as will be described in § 6.2.)

5.2 Univalent Type Constructors
The core of the development is devoted to the proofs that standard type constructors are univalently

parametric, notably Type and Π. In terms of the Coq framework, this means providing UR_Type
instances relating each constructor to itself. These instance definitions follow directly the proofs

discussed in § 3.

For the universe Typei , we define:

Instance UR_Type_def@{i j} : UR@{j j j} Type@{i} Type@{i} := {| ur := UR_Type@{i i i} |}.

This is where our fixpoint construction appears: the relation at Typei is defined to be UR_Type
itself. So, for a type to be in the relation means more than mere equivalence: we also get a relation

between elements of that type that is coherent with equality. This UR_Type_def instance will be
used implicitly everywhere we use the notation X ≈ Y, when X and Y are types themselves.

15

For dependent function types, we set:

Definition UR_Forall A A' (B : A→ Type) (B' : A'→ Type) (dom: UR A A')

(codom: ∀ x y (H: x ≈ y), UR (B x) (B' y)) : UR (∀ x, B x) (∀ y, B' y) :=

{| ur := fun f g⇒∀ x y (H: x ≈ y), f x ≈ g y |}.

The univalent parametricity relation on dependent function types expects relations on the domain

and codomain types, the latter being parameterized by the former through its argument (H : x ≈ y).
The definition is the standard heterogeneous extensionality principle on dependent function types.

Interestingly, the Equiv instance derived from this definition for dependent function types has

the following type:

Instance Equiv_∀ : ∀ (A A' : Type) (eA : A ≈ A') (B : A→ Type)

(B' : A'→ Type) (eB : B ≈ B'), (∀ x : A, B x) ≃ (∀ x : A', B' x).

While the conclusion is an equivalence, the assumptions eA and eB are about univalent relations

for A, A' and B and B'. The first one is implicitly resolved as the UR_Type_def defined above, and the
second one as a combination of UR_Forall and UR_Type_def. With these stronger assumptions,

and because ≈ is heterogeneous, we can prove the equivalence without introducing transports, and

hence avoid the transport hell (§ 2.3). This is key to make the type class instance proof search

tractable: it is basically structurally recursive on the type indices. We can then show that the

15
Thanks to the implicit cumulativity of universes in Coq, we do not need to worry about lifting our constructions from

lower to larger types in general, so from now on we will omit the universe annotations (like @{j j j} above), although

some annotations appear in the Coq source files in order to explicitly validate our assumptions about universes.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:21

dependent function type seen as a binary type constructor is related to itself using the univalent

relation and equivalence constructed above:

Definition FP_∀ : (fun A B⇒ (∀ x:A , B x)) ≈ (fun A' B'⇒ (∀ x:A', B' x)).

To instrument the type class instance proof search, we add proof search hints for each fundamental

property.

We proceed similarly for other constructors, i.e. dependent pairs, the identity type, natural

numbers and booleans with the canonical univalent relation, where we additionally prove the

fundamental property for the eliminators; i.e. we have many fundamental property lemmas such as:

Definition FP_Σ : @sigT ≈ @sigT.

Having spelled out the basics of the Coq framework for univalent parametricity, we can now

turn to the practical issue of effective transport.

6 EFFECTIVENESS OF UNIVALENT TRANSPORT
Univalence is not constructively expressible in CIC, hence univalent transport is not generally

effective. Univalent parametricity allows us to address each constructor of the theory in turn, and

to avoid axioms altogether or push them “as far back as possible”. However, because some proofs

of univalent parametricity rely on axioms, transported functions that exercise these proofs will not

be effective. Understanding when these proofs can be “exercised” is therefore crucial to then devise

techniques for maximizing effectiveness of transport.

6.1 Axioms in Univalent Parametricity Proofs and Effectiveness of Transport
The proofs of univalent parametricity we have developed make use of two axioms:

(1) The univalence axiom is used to show the coherence condition of univalent parametricity

for the universe (§ 3.3.1). This is to be expected and unavoidable, as this condition for the

universe exactly states that type equivalence coincides with equality.

(2) The functional extensionality axiom is used to show that the transport functions of the

equivalence for the dependent product form an equivalence (§ 3.3.3).

Additionally, as shown in § 4, the effectiveness of univalent transport for inductive types depends

on the type of parameters and indices. In particular, proving univalent parametricity of indexed

families requires using the coherence condition.

To see how this relates to practice, consider the case of functions (2). Functional extensionality is

only used in the proof that the transport functions form an equivalence. In particular, this means

that the transport functions themselves are effective. Therefore, when transporting a first-order

function, the resulting function is effective.

For the axiom to interfere with effectiveness, we need to consider a higher-order function,

i.e. that takes another function as argument. Consider for instance the conversion of a higher-order

dependent function g operating on a function over natural numbers

g : ∀ (f: N→ N), Vector N (f 0)

to one operating on a function over binary natural numbers

g' : ∀ (f: N→ N), Vector N (f ↑0) : ↑g.

We transport g to g' along the equivalence between the two higher-order types above. Such a

transport uses, in a computationally-relevant position, the fact that the function argument f can be

transported along the equivalence between N→ N and N→ N. Consequently, the use of functional

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:22 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

extensionality in the equivalence proof shimes in, and g' is not effective. (Specifically, g' pattern
matches on an equality between natural numbers that contains the functional extensionality axiom.)

Fortunately, there are different ways to circumvent this problem, by exploiting the fact that

univalent parametricity is defined in an ad hocmanner, and hence specializable through specific type

class instances. This section shows how we can further specialize proofs of univalent parametricity

in situations where using axioms can be avoided. Sometimes we can ignore the fact that an equality

proof might be axiomatic by automatically crafting a new one that is axiom-free (§ 6.2), or we can

avoid transporting type families with (potentially axiomatic) proofs of equality in some specific

cases (§ 6.3 and § 6.4). Finally, we identify a syntactic fragment of CIC for which effective transport

is guaranteed (§ 6.5). This fragment is practically relevant as it corresponds to standard cases of

certified programming, i.e. it contains System Fω and indexed inductive types with a decidable

equality.

6.2 Canonical Equality for Types with Decidable Equality
Any proof of equality between two natural numbers can be turned into a canonical, axiom-free

proof using decidability of equality on natural numbers. In general, decidable equality on a type A
can be expressed in type theory as

Definition DecEq (A : Type) := ∀ x y : A, (x = y) + ¬(x = y).

Hedberg’s theorem [Univalent Foundations Program 2013] implies that if A has decidable equality,

then A satisfies Uniqueness of Identity Proofs (UIP): any two proofs of the same equality between

elements of A are equal. Hedberg’s theorem relies on the construction of a canonical equality to

which every other is shown equal. Specifically, when A has a decidable equality, it is possible to
define a function

Definition Canonical_eq_decidable A (Hdec : DecEq A) : ∀ x y : A, x = y→ x = y :=

fun x y e⇒ match Hdec x y with

| inl e0⇒ e0

| inr n⇒ match (n e) with end end.

This function produces an equality between two terms x and y of type A by using the decision

procedure Hdec, independently of the equality e. In the first branch, when x and y are equal, it

returns the canonical proof produced by Hdec, instead of propagating the input (possibly-axiomatic)

proof e. And in case the decision procedure returns an inequality proof (of type x=y→ False), the
function uses e to establish the contradiction. In summary, the function transforms any equality

into a canonical equality by using the input equality only in cases that are not possible.

We can take advantage of this insight to ensure effective transport on indices of types with

decidable equality. The general idea is to extend the relation on types A ▷◁ B to also include two

functions ∀ x y : A , x = y→ x = y and ∀ x y : B , x = y→ x = y. For types with decidable equality,

these functions can exploit the technique presented above, and for others, these are just the identity.

However, care must be taken: we cannot add arbitrary new computational content to the relation;

we have to require that these functions preserve reflexivity. This is specified in the following class:

Class Canonical_eq (A:Type) :=

{ can_eq : ∀ (x y : A), x = y→ x = y ;

can_eq_refl : ∀ x, can_eq x x eq_refl = eq_refl }.

which is used for the last two attributes of the UR_Type class given in § 5.1.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:23

There are two canonical instances of Canonical_eq, the one that is defined on types with

decidable equality, and exploits the technique above, and the default one, which is given by the

identity function (and proof by reflexivity).

Using this extra information, it is possible to improve the definition of univalent parametricity by

always working with canonical equalities. This way, equivalences for inductive types whose indices

are of types with decidable equality—like length-indexed vectors and many common examples—

never get stuck on rewriting of indices.

6.3 Canonically-Transportable Predicates
As mentioned in the introduction of this section, for some predicates, it is not necessary to pattern

match on equality to implement transport.

The simplest example is when the predicate does not actually depend on the value, in which

case P x ≃ P y can be implemented by the identity equivalence because P x is convertible to P y,
independently of what x and y are. It is also the case when the predicate is defined on a type with a

decidable equality, so we can instead pattern match on the canonical equality (§ 6.2).

To take advantage of this situation whenever possible, we introduce the notion of transportable

predicates.

Class Transportable {A} (P : A→ Type) := {

transportable :> ∀ x y, x = y→ P x ≃ P y;

transportable_refl : ∀ x, transportable x x eq_refl = Equiv_id (P x) }.

Note that as for Canonical_eq, we need to require that transportable behaves like the standard

transport of equality by sending reflexivity to the identity equivalence.

For instance, the instance for non-dependent functions is defined as

Instance Transportable_cst A B : Transportable (fun _ : A⇒ B) := {|

transportable := fun (x y : A) _⇒ Equiv_id B;

transportable_refl := fun x : A⇒ eq_refl |}.

To propagate the information that every predicate (a.k.a. type family) comes with its instance of

Transportable, we specialize the definition of UR (A→ Type) (A'→ Type):

Class URForall_Type_class A A' {dom : UR A A'} (P : A→ Type) (Q : A'→ Type) :=

{ transport_ :> Transportable P; ur_type :> ∀ x y (H:x ≈ y), P x ▷◁ Q y }.

Definition URForall_Type A A' {HA : UR A A'} : UR (A→ Type) (A'→ Type) :=

{| ur := fun P Q⇒ URForall_Type_class A A' P Q |}.

This definition says that two predicates are in relation whenever they are in relation pointwise,

and when P is transportable.

Using Transportable, we can instrument the definition of univalent relation on dependent

products to improve effectiveness. More precisely, in the definition of the inverse function that

defines the equivalence (∀ x : A, B x) ≃ (∀ x : A', B' x) we use the fact that B is transportable to change
the dependency in B instead of pattern matching on the equality between the dependencies. This

is possible because from eB : B ≈ B', we know that B is transportable (thanks to the specialized

definition URForall_Type).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:24 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

6.4 Fully-Applied Predicates
Another scenario where the ad-hoc setting of univalent parametricity can be exploited to maximize

effectiveness is when a type predicate is used fully-applied. For instance, consider the impredicative

encoding of equality:

Definition iEq A (x y : A) := ∀ (P : A→ Type), P x→ P y.

and notice that the type predicate P above only appears in a fully-applied manner (P x and P y).
In order to show that iEq is univalently parametric, suppose we use the general proof that the

dependent product is univalent (§ 3.3.3). Starting from two type families P and Q with a proof H
that ∀ x x' : x ≈ x'→ P x ≈ Q x', we first apply functional extensionality to deduce P = Q, and then

rewrite P into Q in the type P x→ P y. This use of functional extensionality makes the induced

equivalence non effective.

However, because the type family P in iEq always appears fully applied, we need not rely on

functional extensionality. The hypothesis H is enough to rewrite P x→ P y into Q x→ Q y directly.

6.5 Characterizing an Effective Fragment
The techniques described above go a long way in supporting useful applications of univalent

transport. The open-endedness of the type class framework allows programmers (us included) to

progressively augment effectiveness of univalent transport in Coq by building an extensive library

of type class instances that exploit the specificities of certain transport scenarios.

There are two limits to this approach, however. First, there are equivalences that cannot be

effective, because they imply either univalence or functional extensionality. Indeed, it is possible to

lift the reflexivity proof that N = N to a term of type N = N using the equivalence between N and N.
But no closed term inhabits N = N in CIC.

Second, instead of letting programmers realize that a transported function is ineffective when

using it, and then possibly trying to figure out whether a specific instance could address the problem,

programmers might want a predictable (even though conservative) syntactic approach to anticipate

whether a given transported function will be effective or not.

Fortunately, we can easily characterize a useful subset of CIC for which effectiveness of univalent

transport is guaranteed to succeed. This fragment is characterized by two criteria:

(1) All indexed inductive families involved in the transport must be of types that have decidable

equality.

(2) Types involved in the transport cannot quantify over functions whose codomain is the

universe.

The first criterion is clear from the discussion in § 6.2. It is important here to recall the distinction

between parameters and indices; the criterion only restricts indices, not parameters.

The second criterion aims at making sure that the only dependencies that are subject to transport

come from the use of indexed inductive types. In particular, it rules out in the definition of the type

arbitrary A→ Type predicates, such as used in impredicative encodings like iEq above.
16

This fragment is sufficiently expressive to be interesting: it contains System Fω , extended with

indexed inductive types with a decidable equality, which is often sufficient for certified programming

applications of Coq.

Note that the types of inductive principles themselves are outside of the fragment. For instance,

N_rect : ∀ (P : N→ Type), ... quantifies over a type predicate. This means that if we transport

N_rect to an inductive principle on binary numbers N, it may not be effective. But any use of

16
As explained in § 6.4, the particular case of iEq can be addressed through ad-hoc polymorphism because the type

predicate is used fully-applied.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:25

N_rect to build a type is in the fragment. As an example, the following type, which expresses the

commutativity of addition, lives in the fragment:

∀ (n m:N), N_rect (fun _⇒ N) m (fun _ res⇒ S res) n =

N_rect (fun _⇒ N) n (fun _ res⇒ S res) m

Example. Let us go back to the library example from § 1. The library itself is a record, which is

effectively univalently parametric (§ 4.2). Like induction principles, Lib is outside of the fragment

as it quantifies over Type→ N→ Type, but any use of it (like our instantiation with vectors) is in

the fragment.

The head and map attributes are standard functions that only quantify on types, not type predi-

cates. Also, the vector inductive type ranges over indices that have decidable equality. Therefore, we

definitely know that the transported library will be an actual record with effective implementations

of head and map. Indeed:

Eval compute in liblist.(map) S [[1;2]].

= [[2; 3]]

: {l : list N & length l = 2}

Also, the correctness property prop has automatically been ported to lists:

Check liblist.(prop _).

: ∀ (n : N) (A B : Type) (f : A→ B) (v : {l : list A & length l = S n}),

head liblist (map liblist f v) = f (head liblist v)

However, liblist.prop does not compute in general because it states an equality between

elements of B, and we know nothing about B; in particular, it may not have a decidable equality.

Arguably, since the property is morally computationally irrelevant for a typical certified program-

ming task, there is not much interest in such effectiveness. But if desired, the only solution is to

define prop such that B is a type with decidable equality; then the induced equivalence produces a

proposition liblist_prop that is effective.

6.6 Efficiency
We now come back to the example mentioned in the introduction: using equivalences for free

to switch between easy-to-reason-about and efficient representations, considering the case of

(ordinary) natural numbers N and binary natural numbers N. We first establish the equivalence

between these types:

Instance Equiv_N_nat : Equiv N N.

unshelve refine (BuildEquiv _ _ _ (isequiv_adjointify _ _ _ _)).

+ exact N.of_nat.

+ exact N.to_nat.

+ cbn; intro. exact (Nat2N_id _).

+ cbn; intro. exact (N2Nat_id _).

Defined.

Here, N.of_nat and N.to_nat are the standard conversion functions betwenn N and N, and
Nat2N_id and N2Nat_id are the proofs of section and retraction, based on existing proofs readily

available in the Coq standard library.

The univalent relation instance is constructed automatically based on the above equivalence:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:26 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

Instance UR_nat_N : UR N N.

eapply UR_Equiv. typeclasses eauto. typeclasses eauto.

Defined.

We can then exploit this relation to automatically define the power function onN by transporting

the (efficient) power function on N:

Definition N_pow : N→ N→ N := ↑ N.pow.

As expected, the generated lifted function first converts its arguments to their binary representations,

applies the underlying efficient power function, and converts the result back to N:

N_pow n m = N.to_nat (N.pow (N.of_nat n) (N.of_nat m))

In our experiments, evaluating N_pow 2 27 is more than twice as fast as computing it with the

standard power function directly defined on N. Hence the cost of transporting from one represen-

tation to another can be balanced when the computation involved is much more efficient on one

side. In fact, most of the cost in that case is the conversion of the binary result back to an inductive

N. If an algorithm performs large power computations but eventually returns a small number, then

the lifted function runs instantly while the version on inductive numbers can take several minutes.

We refer the interested reader to the accompanying artifact.

Finally, we observe that effective proofs of univalent parametricity are not computationally

equivalent in practice. For instance, as explained at the end of § 4.4, we could define univalence

of Vect A n through the equivalence with lists refined with a predicate on their length and the

fact that lists refined with a predicate on their length are univalent. While the induced transport is

effective, it is far from optimal computationally because it implies going through lists, which means

creating intermediate data structures. Likewise, transporting functions that operate on vectors of

N to functions that operate on vectors of N will be much more efficient if the direct equivalence is

used.

7 RELATEDWORK
Type theories. Homotopy Type Theory [Univalent Foundations Program 2013], and its embod-

iment in the HoTT library [Bauer et al. 2017] treat equality of types as equivalence. For regular

datatypes (also know as homotopy sets or hSets), equivalence boils down to isomorphism, hence

the existence of transports between the types. However, as univalence is considered as an axiom,

any meaningful use of the equality type to transport terms along equivalences results in the use

of a non-computational construction. In contrast we carefully delimit the effective equivalence-

preserving type constructors in our setting, pushing axioms as far as possible, and supporting

specialized proofs to avoid them in certain scenarios.

Cubical Type Theory [Cohen et al. 2016] provides computational content to the univalence

axiom, and hence functional and propositional extensionality as well. In this case, the invariance of

constructions by type equivalence is built in the system and the equality type reflects it. Note that the

recent work of Altenkirch and Kaposi [2017] on a cubical type theory without an interval proposes

a similar use of an heterogeneous relation; but in our framework, we relate the heterogeneous

relation to equality, which allows us to stay within CIC, without relying on another type theory.

Observational Type Theory (OTT) [Altenkirch et al. 2007] uses a different notion of equality,

coined John Major equality. It is a heterogeneous relation, allowing to compare terms in potentially

different types, usually with the assumption that the two types will eventually be structurally equal,

not merely equivalent. This stronger notion of equality of types is baked in the type system, where

type equality is defined by recursion on the type’s structure, and value equality follows it. It implies

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

Equivalences for Free 92:27

the K axiom which is in general inconsistent with univalence, although certainly provable for all

the non polymorphic types definable in OTT. A system similar to ours could be defined on top of

OTT to allow transporting by equivalences.

Parametric Type Theory and the line of work integrating parametricity theory to dependent

type theory, either internally [Bernardy et al. 2015] or externally, is linked to the current work in

the sense that our univalent parametricity translation is a refinement of the usual parametricity

translation. We however do not attempt to make the theory internally univalent as we recognized

that not all constructions in CIC are effectively univalent.

For Extensional Type Theory, Krishnaswami and Dreyer [2013] develop an alternative view on

parametricity, more in the style of Reynolds, by giving a parametric model of the theory using

quasi-PERs and a realizability interpretation of the theory. From this model construction and

proof of the fundamental lemma they can justify adding axioms to the theory that witness strong

parametricity results, even on open terms. However they lose the computability and effectiveness

of Bernardy’s construction or ours.

The parametricity translation of Anand and Morrisett [2017] extends the logical relation on

propositions to force that related propositions are logically equivalent. It can be seen as a degenerate

case of our extension which forces related types to be equivalent, considering that equivalence boils

down to logical equivalence on propositions (see § 3.3 for a more detailed explanation). However

the translations differ in other aspects. While our translation requires the univalence axiom, theirs

assumes proof irrelevance and the K axiom, and does not treat the type hierarchy. Our solution to

the fixpoint arising from interpreting Typei : Typei+1 is original, along with the use of conditions

to ensure coherence with equality. They study the translation of inductively-defined types and

propositions in detail, giving specific translations in these two cases to accommodate the elimination

restrictions on propositions, and are more fine-grained in the assumptions necessary on relations

in parametricity theorems. In both cases, the constructions were analyzed to ensure that axioms

were only used in the non-computational parts of the translation, hence they are effective.

Data refinement. Another part of the literature deals with the general data refinement problem,

e.g. the ability to use different related data structures for different purposes: typically simplicity of

proofs versus efficient computation. The frameworks provide means to systematically transport

results from one type to the other.

Magaud and Bertot [2000] and Magaud [2003] first explored the idea of transporting proof

terms from one data representation to another in Coq, assuming the user gave a translation of the

definitions from one datatype to the other. It is limited to isomorphism and implemented externally

as a plugin. The technique is rather invasive in the sense that it supports the transport of proof

terms that use the computational content of the first type (e.g. the reduction rules for plus on

natural numbers) by making type conversions explicit, turning them into propositional rewrite

rules. This approach breaks down in presence of type dependency.

In CoqEAL [Cohen et al. 2013] refinement is allowed from proof-oriented data types to efficiency-

oriented ones, relying on generic programming for the computational part and automating the

transport of theorems and proofs. They not only deal with isomorphisms, but also quotients, and

even partial quotients, which we cannot handle. Still, they can and do exploit parametricity for

generating proofs but they do not support general dependent types, only parametric polymorphism.

Moreover, the style they advocate prevents doing local transport and rather requires working with

interfaces and applying parametricity in a second step, while we can avoid that thanks to our

limitation to transport by equivalences.

Haftmann et al. [2013] explain how the Isabelle/HOL code generator uses data refinements to

generate executable versions of abstract programs. The refinement relation used is similar to the

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

92:28 Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau

partial quotients of CoqEAL. The Autoref tool for Isabelle [Lammich 2013] also uses parametricity

for refinement-based development. It is an external tool to synthesize executable instances of

generic algorithms and refinement proofs.

Huffman and Kunčar [2013] address the problem of transferring propositions between different

types, typically a representation type (e.g. integers) to an abstract type (e.g. natural numbers) in

the context of Isabelle/HOL. Again this allows to relate a type and its quotient, like in CoqEAL,

and is based on parametricity. Recently, Zimmermann and Herbelin [2015] present an algorithm

and plugin to transport theorems along isomorphisms in Coq similar to that of Huffman and

Kunčar [2013]. In addition to requiring the user to provide a surjective function f to relate two

data types, their technique demands that the user explicitly provide transfer lemmas of the form

∀x1 . . . xn , R (x1 . . . xn) =⇒ R′(f (x1) . . . f (xn)), for each relation R that the user expects to

transfer to a relation R′. The approach is not yet able to handle parameterized types, let alone

dependent ones.

8 CONCLUSION
This work explores an approach tomaximize the computational content of univalence in a dependent

type theory. To this end, we develop the notion of univalent parametricity, which strengthens

the parametricity theory of dependent type theory to ensure preservation of equivalences. We

introduce an heterogeneous univalent parametricity relation and translation for CCω based on it.

The proofs of univalent parametricity of type constructors are computationally relevant because

they induce the function that allows to transport definitions and proofs over a given type to

equivalent definitions and proofs over an equivalent type.

We exploit the open-ended, ad-hoc formulation of univalent parametricity to provide effective

proofs whenever possible; we identify a useful fragment of CIC for which univalent transport is

guaranteed to be effective. In practice, this means that our Coq framework can readily be used to

transport certified libraries and theories along type equivalences. Also, the open-endedness of the

type class framework allows programmers to define instances that are tailored to specific needs in

terms of effectiveness and efficiency, to be balanced with the complexity of proofs to provide.

ACKNOWLEDGMENTS
We thank Pierre-Évariste Dagand, Eric Finster and the anonymous reviewers for useful feedback,

as well as Simon Boulier and Gaëtan Gilbert for contributing parts of the Coq development.

REFERENCES
Thorsten Altenkirch and Ambrus Kaposi. 2017. Towards a cubical type theory without an interval. Leibniz International

Proceedings in Informatics. (2017).

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the

Workshop on Programming Languages meets Program Verification (PLPV 2007). 57–68.

Abhishek Anand and Greg Morrisett. 2017. Revisiting Parametricity: Inductives and Uniformity of Propositions. CoRR

abs/1705.01163 (2017). http://arxiv.org/abs/1705.01163

John Bacon. 1974. The Untenability of Genera. Logique et Analyse 17, 65/66 (jan-apr 1974), 197–208.

Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. 2017. The HoTT

Library: A Formalization of Homotopy Type Theory in Coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified

Programs and Proofs (CPP 2017). ACM, New York, NY, USA, 164–172. DOI:http://dx.doi.org/10.1145/3018610.3018615
Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory.

Electronic Notes in Theoretical Computer Science 319 (2015), 67–82.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free: Parametricity for dependent types. Journal

of Functional Programming 22, 2 (March 2012), 107–152.

S. Blazy, C. Paulin-Mohring, and D. Pichardie (Eds.). 2013. Proceedings of the 4th International Conference on Interactive

Theorem Proving (ITP 2013). Lecture Notes in Computer Science, Vol. 7998. Springer-Verlag.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

http://arxiv.org/abs/1705.01163
http://dx.doi.org/10.1145/3018610.3018615

Equivalences for Free 92:29

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The next 700 syntactical models of type theory. In Certified

Programs and Proofs (CPP 2017). Paris, France, 182 – 194. DOI:http://dx.doi.org/10.1145/3018610.3018620
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2016. Cubical Type Theory: a constructive interpretation

of the univalence axiom. (Oct. 2016). https://hal.inria.fr/hal-01378906 Accepted for publication in LIPIcs.

Cyril Cohen, Maxime Dénès, and Anders Mörtberg. 2013. Refinements for Free!. In Proceedings of the International Conference

on Certified Programming and Proofs (CPP 2013) (Lecture Notes in Computer Science), G. Gonthier and M. Norrish (Eds.),

Vol. 8307. Springer-Verlag, 147–162.

The Coq Development Team. 2016. The Coq proof assistant reference manual. http://coq.inria.fr Version 8.6.

Nicola Gambino and Martin Hyland. 2004. Wellfounded trees and dependent polynomial functors. In Proceedings of Types

for Proofs and Programs (TYPES 2003) (Lecture Notes in Computer Science), Vol. 3085. Springer-Verlag, 210–225.

Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. 2013. Data Refinement in Isabelle/HOL, See

[Blazy et al. 2013], 100–115.

Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In

Proceedings of the 3rd International Conference on Certified Programs and Proofs (CPP 2013). Springer-Verlag, Melbourne,

Australia, 131–146.

Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational Parametricity in the Extensional Calculus of

Constructions. In Proceedings of the Conference for Computer Science Logic (CSL 2013). 432–451.

Peter Lammich. 2013. Automatic Data Refinement, See [Blazy et al. 2013], 84–99.

Nicolas Magaud. 2003. Changing Data Representation within the Coq system. In International Conference on Theorem

Proving in Higher Order Logics (TPHOLs 2003) (Lecture Notes in Computer Science), D. Basin and B. Wolff (Eds.), Vol. 2758.

Springer-Verlag.

Nicolas Magaud and Yves Bertot. 2000. Changing Data Structures in Type Theory: A Study of Natural Numbers. In

International Workshop on Types for Proofs and Programs (TYPES 2000) (Lecture Notes in Computer Science), P. Callaghan,

Z. Luo, J. McKinna, and R. Pollack (Eds.), Vol. 2277. Springer-Verlag, 181–196.

Per Martin-Löf. 1971. An Intuitionistic Theory of Types. (1971). Unpublished manuscript.

Christine Paulin-Mohring. 2015. Introduction to the Calculus of Inductive Constructions. In All about Proofs, Proofs for All,

Bruno Woltzenlogel Paleo and David Delahaye (Eds.). Studies in Logic (Mathematical logic and foundations), Vol. 55.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. 2006. Simple unification-based type

inference for GADTs. In Proceedings of the 11th ACM SIGPLAN Conference on Functional Programming (ICFP 2006). ACM

Press, Portland, Oregon, USA, 50–61.

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513–523.

Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In Proceedings of the 21st International Conference on

Theorem Proving in Higher-Order Logics. Montreal, Canada, 278–293.

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for

Advanced Study.

Philip Wadler. 1989. Theorems for Free!. In Functional Programming Languages and Computer Architecture. ACM Press,

347–359.

Theo Zimmermann and Hugo Herbelin. 2015. Automatic and Transparent Transfer of Theorems along Isomorphisms in the

Coq Proof Assistant. arXiv:1505.05028v4. (2015).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 92. Publication date: September 2018.

http://dx.doi.org/10.1145/3018610.3018620
https://hal.inria.fr/hal-01378906
http://coq.inria.fr

	Abstract
	1 Introduction
	2 Type Equivalence, Univalence, and Parametricity
	2.1 Type Equivalence
	2.2 Univalence
	2.3 Towards Effective Univalent Transport
	2.4 Parametricity for Dependent Types

	3 Univalent Parametricity
	3.1 Univalent Logical Relation
	3.2 Univalent Parametricity and Indiscernibility of Equivalents
	3.3 Type Constructors are Univalently Parametric
	3.4 Univalent Parametricity Translation

	4 Univalent Parametricity and Inductive Types
	4.1 Dependent Pairs
	4.2 Dependent Records
	4.3 Parameterized Recursive Inductive Families
	4.4 Indexed Inductive Families

	5 Univalent Parametricity in Coq
	5.1 Coq Framework
	5.2 Univalent Type Constructors

	6 Effectiveness of Univalent Transport
	6.1 Axioms in Univalent Parametricity Proofs and Effectiveness of Transport
	6.2 Canonical Equality for Types with Decidable Equality
	6.3 Canonically Transportable Predicates
	6.4 Fully-Applied Predicates
	6.5 Characterizing an Effective Fragment
	6.6 Efficiency

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

