Support Vector Machine to Monitor Greenhouse Plant with Gaussian Loss Function

Abstract : In this paper, it applys Gaussian loss function instead of ε-insensitive loss function in a standard SVRM to devise a new model and a new type of support vector classification machine whose optimization problem is easier to solve and has conducted effective test on open data set in order to apply the new algorithm to environment monitoring in greenhouse plants and the monitoring result is better than any other method available.
Type de document :
Communication dans un congrès
Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-344 (Part I), pp.343-352, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18333-1_40〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01559558
Contributeur : Hal Ifip <>
Soumis le : lundi 10 juillet 2017 - 17:27:52
Dernière modification le : mardi 18 juillet 2017 - 15:30:38
Document(s) archivé(s) le : mercredi 24 janvier 2018 - 16:37:26

Fichier

978-3-642-18333-1_40_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Manfu Yan, Qing Zhang, Jianhang Zhang. Support Vector Machine to Monitor Greenhouse Plant with Gaussian Loss Function. Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-344 (Part I), pp.343-352, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18333-1_40〉. 〈hal-01559558〉

Partager

Métriques

Consultations de la notice

39

Téléchargements de fichiers

14