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Abstract

Background: Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular
medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of
exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate
local dynamics of proteins.

Results: A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle
fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion
coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for
both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to
the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated
the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences
additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins.

Conclusion: An automated method has been designed to simultaneously estimate the diffusion coefficient and the
release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be
exploited for further deciphering cell membrane dynamics.

Keywords: TIRF microscopy, Vesicle fusion model, Molecule diffusion, Protein release rate, Model fitting, Exocytosis,
Transferrin receptor (TfR), Langerin protein

Background
Characterizing dynamic protein behaviors in live cell flu-
orescence microscopy is of paramount importance to
understand cell mechanisms. In the case of membrane
traffic, cargo molecules are transferred from a donor to an
acceptor compartment [1]. For instance, during the exo-
cytosis process, a vesicle conveys cargo molecules to the
plasma membrane, and then opens to expel them from
the cell. Total internal reflection fluorescence microscopy
(TIRFM) is particularly well suited for focusing on the
late steps of exocytosis events, which occur at the plasma
membrane [2]. However, it is still a challenging task to
quantify local dynamics of proteins, and in particular, to
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estimate the local behavior of the transmembrane pro-
teins which are also transported through the exocytic
vesicles, once the fusion event had occurred at the plasma
membrane. The type of dynamics undergone by trans-
membrane proteins in the plasma membrane is usually
assumed to be a lateral free diffusion [3], at least within
a short time scale, which is the case for the cell mech-
anisms we are interested in. Physical barriers depending
on the nature of interactions of these proteins with their
local environment, which impede the free diffusion of
molecules in the plane of the membrane, may impose
diverse levels of segregation [4].

In this paper, we investigate protein dynamics
issues attached to exocytosis events observed in TIRF
microscopy. More precisely, we focus on the dynamics
of two fluorescently labeled cargo proteins, namely the
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Transferrin receptor (TfR), and a C-type Lectin, the
Langerin. TfR and Langerin transmembrane proteins are
inserted in cellular membranes, including the plasma
membrane, and are involved in several biological pro-
cesses. They are constitutively endocytosed and recycled
through partly common endosomal-recycling pathways
[5]. In the exocytosis-recycling step they are transported
by a recycling carrier, which fuses to the plasma mem-
brane. Then, the transmembrane proteins eventually
diffuse in the augmented two dimensional lipid bilayer
but may also remain temporarily bounded, forming semi-
persistent structures slowly fading over time as a result
of a dissociation process. In what follows, we discuss
related work on diffusion quantification, simulation, and
modeling, while positioning our approach with respect to
the literature.

Diffusion quantification
Regarding diffusion quantification, many methods were
proposed to compute the diffusion coefficient. They can
be classified into four main categories.

• Methods based on single particle tracking (SPT), that
is, exploiting trajectories or successive displacements
[6–9]. The diffusion coefficient is inferred from the
mean squared displacement (MSD) assuming
Brownian motion. An alternating criterion,
maximum a posteriori (MAP), is used in [10].

• Fluorescence fluctuation spectroscopy, which relies
on the spatial and/or temporal intensity correlation
between spatially and/or temporally neighboring
pixels [11–13].

• Maximum likelihood estimation based on the
diffusion equation [14, 15]. The maximum likelihood
estimation adopted in [15], assumes multiplicative
log-normal measurement noise. Yet, results were
provided only on simulated data, the reported work
focusing mainly on model parameter identifiability.

• Intensity fitting methods in which an intensity model
is formulated and estimated in a space-time volume
of the microscopy image sequence [16–18], as
exploited in fluorescence recovery after
photobleaching (FRAP) experiments [18].

Diffusion simulation
Simulations of lateral diffusion processes were exploited
in [19] to improve the accuracy in evaluating FRAP mea-
surements for the estimation of diffusion coefficients. In
[20], simulations of both isotropic and anisotropic dif-
fusion were defined on curved biological surfaces, and
applied to the membrane of endoplasmic reticulum. A
numerical method is also designed in [21] for computing
diffusive transport on complex surface geometries from
image data. Interactions between proteins and membrane

structures were taken into account in [22, 23]. In contrast,
since our method is able to locally estimate the parameters
of interest by taking into account only a small space-time
area around the vesicle fusion location, local homogene-
ity and planarity of the membrane can be reasonably
assumed.

Vesicle fusion modeling
Efforts have been undertaken to model diffusion in the
plasma membrane after vesicle fusion. It was addressed in
[16, 17]. In these works, the simple point source model
was adopted, meaning that all the proteins are assumed
to be initially concentrated in one single point and imme-
diately diffused. This model thus relies on restrictive
hypotheses which may yield non-accurate results. This is
illustrated in Fig. 1 with kymographs. A kymograph gives
the evolution over time of a given image column (or line),
by concatenating its successive profiles. The horizontal
axis represents time. Figure 1a contains the first frame of a
TIRFM image sequence and the kymograph correspond-
ing to column 161 where a Langerin fusion event takes
place. The kymograph obtained for a simulation based on
the point source model (Fig. 1b left) significantly departs
from the real one. In contrast, the extended model we
propose correctly mimics the real one (Fig. 1b right).

Our approach
We propose an original vesicle fusion model, relying on
two realistic hypotheses. First, we only assume that the
vesicle is smaller than the radius σPSF of the micro-
scope point spread function (PSF). Secondly, we take into
account that the proteins are progressively released in the
plasma membrane after the fusion occurs. As explained
later, we model the release process as an exponential decay
of the number of proteins contained in the vesicle. Hence,
we term “small-extent source with exponential decay
release” (SSED) the proposed model. Besides, our model
fitting method is local both in space and time, allowing for
the estimation of local protein dynamics for each individ-
ual vesicle fusion event. Both translational and rotational
diffusion were handled in [24, 25]. However, the rotational
component was shown to be negligible with respect to the
lateral component [26]. As a consequence, we will address
lateral diffusion only.

In the 2D TIRFM images we deal with, individual pro-
teins cannot be resolved since they are too close from
each other compared to the microscope resolution, which
precludes SPT methods. Also, fluorescence fluctuation
spectroscopy methods, such as Spatio-Temporal Image
Correlation Spectroscopy (STICS) [27], assume spatial
and/or temporal stationarity to a sufficient extent, and
imply that all the proteins undergo a Brownian motion. In
contrast, both spatial and temporal stationarity hypothe-
ses are no more required for our method, since the
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Fig. 1 Comparison of a real vesicle fusion event in a TIRFM image sequence with simulations of the point source and SSED models. a First frame of a
TIRFM image sequence. b Kymograph at column x = 161 where one fusion event takes place (M10 cell expressing Langerin-pHluorin). c
Kymograph obtained for a simulation based on the point source model (with D = 0.5px2/f). d Kymograph obtained for a simulation based on the
proposed SSED model (with κ−1 = 100f and D = 0.5px2/f)

estimation of the diffusion coefficient remains local in
space (within a small patch) and time (over a few frames).
Furthermore, our SSED model can accomodate mixed
behaviour, that is, a portion of proteins remaining static
for a while. Finally, among intensity fitting estimation
methods, [17] showed leading performance for the point
source model, but it is no more adapted to estimate the
SSED model parameters. Therefore, we have defined a
more elaborate method.

Methods
Point source fusion model
Before introducing our SSED model, let us first consider
the point source fusion model. The mathematical model
u(p, t) of the image intensity at point p ∈ � and time
t ∈[ 0, T] is fully determined by three items: i) the source
particle distribution, ii) the evolution model, iii) the obser-
vation model. The source distribution defines both the
spatial distribution of the particles before they start diffus-
ing, and the law governing their release time to the plasma
membrane or cytosol. The particle evolution model is
the mathematical description of the motion of the pro-
teins after fusion. Here, it is assumed to be Brownian,
and consequently, lateral diffusion is the dynamical model
governing the evolution of the whole particle population.
The observation model is subdivided into several compo-
nents, including possibly different noises and the optical
transfer function or microscope PSF. We will first consider
a noise-free observation model to specify the intensity
model.

To move from Brownian motion to lateral diffusion,
the concept of local concentration must be introduced. In

the vesicle, and later in the cytosol or plasma membrane,
particles are numerous, so that in TIRFM images we do
not locally observe a single particle, but a population
of n particles. Concentration is generally defined as the
number of particles in a given local area.

The total concentration is the sum of the source concen-
tration Cs and the diffusive concentration Cd:

C(p, t) = Cs(p, t) + Cd(p, t). (1)

The point source model assumes that all particles are
initially concentrated at p0 and all instantaneously diffuse
at time t0. Then, we can write:

C(p, t) =
{

Cs(p, t) for t = t0
Cd(p, t) for t > t0

(2)

and the source concentration distribution is proportional
to a spatiotemporal Dirac distribution:

Cs(p, t) = C0 δ(p − p0)δ(t − t0). (3)

The Fick’s second law [28] specifies the evolution over
time and space of the local concentration as a function of
the diffusion coefficient D:

∂Cd
∂t

(p, t) = D�Cd(p, t), (4)

where � denotes the Laplacian operator. The Fick’s sec-
ond law can be solved by Fourier analysis, which yields the
following closed form Green’s function � defined on the
domain �:

�(p, t) = 1
4πD(t − t0)

exp
(

−
∥∥p − p0

∥∥2
2

4D(t − t0)

)
,

∀t > t0, p ∈ �.

(5)
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By linearity of the Fick’s second law, the concentration
C is merely obtained by multiplying � by C0. Equation (5)
can also be interpreted from a stochastic perspective as
reflecting the probability of finding particles at position p
and time t, if they undergo a Brownian motion of diffusion
coefficient D and are initially concentrated at p0.

Let us now handle the observation model. Parameters
of the intensity model are C0, the initial concentration
at p0, the diffusion coefficient D and the radius σPSF of
the PSF. To infer the intensity model u(p, t), we need to
incorporate the observation model, reduced to the PSF
and gain of the microscope. Since we are concerned with
2D membrane diffusion, the PSF can be restricted to a
two-dimensional Gaussian function [29] of variance σ 2

PSF.
The intensity model u is thus obtained by convolving the
concentration C with a Gaussian kernel of variance σ 2

PSF:

u(p, t) ∝ C0

4πD(t − t0) + 2πσ 2
PSF

exp
(

−
∥∥p − p0

∥∥2
2

4D(t − t0) + 2σ 2
PSF

)
. (6)

For the sake of simplicity, we introduce the constant A0
such that:

u(p, t) = A0

2D(t − t0) + σ 2
PSF

exp
(

−
∥∥p − p0

∥∥2
2

4D(t − t0) + 2σ 2
PSF

)
. (7)

SSED fusion model
Our new SSED model introduces a continuous release of
the proteins, meaning that each protein is expected to stay
at the fusion location p0 during a certain amount of time
after t0. This is expressed by an exponential decay of the
source protein concentration inside the vesicle.

C(p, t) still represents the local protein concentration
at point p ∈ �, where � is the image domain, and at
time t, t ∈[ 0, T]. As specified in Eq. (1), it is the sum
of the source concentration component Cs and the dif-
fusing concentration component Cd. Now, the continuous
release introduces a flow between the source concen-
tration component Cs, and the diffusing concentration
component Cd. The usual Fick’s second law is accordingly
modified as follows:

∂Cd
∂t

(p, t) = D �Cd(p, t) − ∂Cs
∂t

(p, t), (8)

subject to

Cs(p, t) = C0 δ(p − p0) exp(−κ(t − t0)) , (9)

where κ denotes the release rate, δ(p − p0) = 1 if
p = p0 or 0 otherwise, and C0 is the initial concentra-
tion at time t0. The exponential decay release is typically

used in the representation of molecule dynamics in differ-
ent configurations such as a narrow escape [23, 30] or a
dissociation-like process [31, 32].

Let us still denote by u(p, t) the true intensity yielded by
the SSED model at p in the t-th image. Using the super-
position principle, and combining (8) and (9), we come
up with the expression of u corresponding to the SSED
model. More precisely, the Fick’s second law (8) can be
solved by Fourier analysis, yielding closed-form Green’s
function. Then, convolving the Green function with the
microscope PSF and the source concentration (9), we get
the following expression:

u(p, t) = A0

σ 2
PSF

exp
(

−κt −
∥∥p − p0

∥∥2
2

2σ 2
PSF

)

+
∫ t

t0

κA0

2D(t − u) + σ 2
PSF

exp
(

−κ(u − t0) −
∥∥p − p0

∥∥2
2

4D(t − u) + 2σ 2
PSF

)
du

(10)

where the factor A0 is related to the microscope PSF and
the initial number of proteins in the vesicle. The inte-
gral in (10) is numerically evaluated, using a trapezoid
integration with an adaptive step size.

Regarding the small-extent source configuration corre-
sponding to the spatial vesicle area, we mathematically
demonstrated that (10) is still valid for a non-pointwise
source, if the radius of the vesicle is small enough with
respect to σPSF.

Detection of fusion events
To motivate our fusion event algorithm, we show a typi-
cal real example in Fig. 2. Figure 2 contains a sequence of
image patches cropped at the same location and at distant
time points from a real TIRFM image sequence. A bright
spot suddenly appears at time t0 when the vesicle begins
to fuse to the membrane. Then, the vesicle is gradually
diffusing in this example.

Before estimating release rate κ and diffusion coefficient
D, we need to detect the fusion events in the TIRFM image
sequence, i.e., the event in which the transmembrane
protein of interest is released to the plasma membrane.

Let us denote by t0 the time step when the event appears
at point p0 in the image domain �. In this study, the trans-
membrane protein Transferrin receptor (TfR) is fluores-
cently labeled with a pH-sensitive probe, the pHluo-rin.
Before t0, pH inside the vesicle is acidic, leading to very
low pHluorin photon emission. When the vesicle fuses
to the plasma membrane, the pHluorin gets exposed to
the neutral extracellular medium, so that the fluorescence
suddenly increases. As a consequence, we have to detect a
localized rapid increase of intensity in the image f (t). We
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Fig. 2 Sequence of patches cropped from a real TIRFM image sequence showing the appearance of the vesicle spot and its progressive temporal
evolution during vesicle fusion to the membrane

rely on the temporal backward difference χf defined as:

∀p ∈ �, t > 0, χf (p, t) = f (p, t) − f (p, t − 1). (11)

A fusion event is perceived as a bright spot centered at
point p0 in the map χf (t0). We apply to every temporal
difference map χf (t) the spot detection method ATLAS
[33]. It is based on the Laplacian of Gaussian (LoG) oper-
ator and proceeds in two steps. First, the scale s of the
vesicles is automatically selected in a multiscale repre-
sentation of the images. To determine it, we use the first
ten frames of the input image sequence f, as it contains
more spots than one frame of the χf sequence. Secondly,
appearing spots related to a fusion event are detected by
thresholding the LoG, at scale s, of χf (t). The threshold
automatically adapts to local LoG statistics estimated in
a sliding Gaussian window, whose size is not critical. The
detection threshold is inferred pointwise from a probabil-
ity of false alarm fixed to 10−6. We come up with a set of
N spots detected over the image sequence.

Regarding the TIRFM image sequences depicting Lan-
gerin, Langerin is tagged with the enhanced yellow fluo-
rescent protein (EYFP). The EYFP is also a pH sensitive
probe. It has the same type of behavior as pHluorin at the
fusion time step. Consequently, we apply the same method
to detect fusion events in Langerin image sequences, even
if a less contrasted temporal intensity switch is observed.
The difference in behavior occurs after the fusion time
step in the release stage, as shown in Fig. 5.

Space-time location of the ith fusion event is denoted
by ei = (p0i, t0i), where p0i, resp. t0i, is the location, resp.
time instant, at which the i-th vesicle fusion occurs. Let
N be the total number of detected fusion events in the
TIRFM image sequence. Then, N spatiotemporal cuboids,
{Vi, i = 1, N}, are extracted around the ei’s, in which the
background (structures and static spots) is estimated and
removed [17]. We consider cuboids of 21 × 21 pixels in
the spatial domain � and of 20 frames long (from t0i to

t0i + 19) over the temporal axis. We come up with a set of
N estimated foreground patch sequences ẑi, i = 1 .. N , in
which only the central diffusing spot remains.

Estimation of the biophysical parameters
Let us now focus on the estimation of the intensity
model parameters in each reconstructed patch sequence
ẑi. The intensity model corresponding to the SSED model,
is defined by Eq. 10. It involves one more parameter
(the release rate κ) than the point source model, and its
expression is more complex. We were not able to satisfy-
ingly estimate the SSED model parameters in simulated
sequences using the estimation procedure we described
in [17]. We need to design a more elaborate algorithm,
described below.

For each detected fusion event ei, we have to fit the
intensity model (10) derived from the SSED model, to the
observed image intensities forming each patch sequence
ẑi reconstructed in subvolume Vi. We assume that the
observed intensity (after background subtraction) ẑi, in
the acquired microscope images, is given by the true
intensity u, specified by the SSED model, corrupted by an
additive zero-mean Gaussian noise. As a consequence, we
can adopt the following quadratic function to estimate the
model parameters:

J (p0, A0, σPSF, κ , D) =
∑
p∈Vi

∥∥ẑi(p, t) − u(p, t)
∥∥2 . (12)

Model fitting will be achieved by minimizing J with
respect to the model parameters p0, A0, σPSF , κ , D. The
minimization of function J has no closed-form solu-
tion, but it can be numerically solved in an iterative way.
It turned out that the Gauss-Newton algorithm did not
always converge to a satisfying minimum in our first
experiments. Therefore, we have adopted the Levenberg-
Marquardt algorithm along with the update scheme of
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[34]. Moreover, since the intensity model at t = t0 is a
Gaussian spot, we can reliably estimate p0, A0 and σPSF
by fitting a Gaussian spot model to the first patch (i.e.,
the one at t0) of the reconstructed sequence ẑi. Regard-
ing p0, this step supplies a refinement of the value given
by the fusion event detection algorithm. This way, the
remaining two parameters κ and D can be estimated with
a regression operating in two dimensions only.

In the estimation procedure, the initialization of the
model parameters, and in particular the initialization of
κ , is influential. Instead of estimating the parameters
only once for each detected fusion event, we propose
to start with different initializations of the parameters.
After running the optimization algorithm, we select the
run which minimizes the sum of squared residuals. In
practice, as a tradeoff between accuracy and computa-
tion time, we have chosen the set {0.1, 0.31, 1, 3.1, 10}
of initial values for κ(init) and {0.1, 10} for D(init). In
order to discard wrongly detected fusion events, or even
badly fitted fusion models, we perform a chi-square
goodness-of-fit test with a rate of type I error α = 5%.
Indeed, it was preferable to overdetect fusion events
in order to ensure as few as possible missed fusion
events, and then use this test to a posteriori remove false
detections.

Results and discussion
Quantitative evaluation of the method performance
To evaluate the proposed estimation method, 300 syn-
thetic patch sequences of size 21 × 21 pixels and length 20
frames were generated with different parameters to mimic
real fusing spots ẑi’s. We have randomly set the diffusion
coefficient in the range of 0.1 to 10px2/f (px denotes the
pixel pitch and f the frame period), and choose the PSF
variance from 0.5 to 1.5px2. As for the release rate κ , it
varies between 0.1 and 10f−1. The signal-to-noise ratio
(SNR) ranges from 1 to 10.

Logarithmic errors on the estimation of both κ and D
are reported in Fig. 3 for each sequence. The estimation
of κ is less accurate than that of D, but we will see in
the next subsection that the accuracy is largely sufficient
to extract relevant information from real TIRFM images.
Moreover, large errors are very rare. Over the 300 gener-
ated sequences, only 5 have an absolute logarithmic error
higher than 0.5, and the mean absolute logarithmic error
(MALE) is quite low, it is equal to 0.12.

More or less periodic effects can be observed in the
upper left plot of Fig. 3. They are due to clusters of
suboptimal estimators corresponding to the same local
minimum for a group of κ values, close to the values of this
group of simulated κ values. Indeed, these “descending
slanted alignments” could be approximated by a straight
line of equation y = a − x, where x stands for log κ and
a is a constant. This undesirable effect is mainly related

to the initialization issue. By the way, our experiments on
artificial data clearly showed that κ is the most difficult
parameter to estimate. This behavior was magnified in the
simulations carried out in a systematic way. However, in
practice, it is far less prominent, and does not hamper
the classification between fast and low release as reported
below.

As for the estimation of D, results reported in Fig. 3
are very good when κ is high enough. Indeed, this behav-
ior is not a surprise, since, for low κ , the flow between
Cs and Cd is very small. Consequently, few proteins are
available to estimate D (precisely the ones undergoing a
Brownian motion). On the contrary, when increasing κ ,
the estimation becomes more and more accurate as the
amount of signal available to estimate D increases. When
κ > 0.25, with a MALE of 0.03, estimation of D is as
precise as the best estimation method for the simpler
point source model [17]. Including the worst estimates,
the overall MALE for the diffusion coefficient is still very
low at 0.06.

Comparison of TfR and Langerin dynamics
Cells and acquired images
We have applied the proposed detection and estimation
algorithm to sixteen real TIRFM image sequences of M10
cells, half of which depicting TfR, the other half depicting
Langerin. Two sample images are shown in Fig. 4.

The M10 human melanoma cell line and its derivative
expressing the Langerin protein have been described pre-
viously [35]. Briefly, the CD207 cDNA was cloned in the
plasmid pEYFP-C3 (Clontech, Ozyme, Paris, France). The
stable M10-Lang-YFP cell line was obtained by transfec-
tion of M10 cells using Fugene 6 reagent (Roche Applied
Science, Meylan, France) followed by selection of the
clones with 400 μg/mL G418 (Invitrogen Fischer Scien-
tific, Illkirch-Graffenstaden, France). Cells are grown in
Roswell Park Memorial Institute medium (RPMI) 1640
supplemented with 10% heat-inactivated fetal calf serum
(FCS), penicillin and streptomycin (Invitrogen Fischer
Scientific). M10 cells were also transiently transfected
with plasmid coding for TfR-pHluorin, using the follow-
ing protocol: 2 μg of DNA, completed to 100 μL with
RPMI (FCS free) were incubated for 5 minutes at room
temperature. 6 μL of X-tremeGENE 9 DNA Transfection
Reagent (Roche Roche Applied Science, Meylan, France)
completed to 100μL with RPMI (FCS free) were added to
the mix and incubated for further 15 min at room tem-
perature. The transfection mix was then added to cells
grown one day before and incubated further at 37 °C
overnight. Cells were then spread onto fibronectin Cytoo
chips (Cytoo Cell Architect) for 4 h at 37 °C with RPMI
supplemented at 10% (vol/vol) of FCS, 10mM Hepes,
100 units/ml of penicillin and 100 μg/ml of Strep before
imaging.
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Fig. 3 Accuracy of the estimation of κ (a) and D (b) on simulated sequences representing the SSED model

Cells were then imaged using a TIRFM setup based
on a Nikon Ti Eclipse equipped with an azimuthal iLas2
TIRFM module (Roper Scientific), a 100x Nikon TIRFM
objective (NA 1.47) and an Evolve 512 EMCCD camera.
The images were acquired in “stream” mode at 100 ms
exposure time per frame. In the set of sequences depict-
ing TfR, 3,147 fusion events are detected, and in those
depicting Langerin, 4 223 fusion events.

Experimental results
The results are gathered in Fig. 5 in the form of four
histograms of log κ̂ and log D̂, estimated in the sequences
depicting TfR or Langerin.

The log κ̂ histograms of TfR and Langerin have very dif-
ferent shapes. While the same first mode is present around
1f−1 for both proteins, the histogram of TfR exhibits
another strong peak around 100f−1, comprising as much

Fig. 4 Two sample images from real TIRFM image sequences depicting a micro-patterned cell: a TfR proteins, b Langerin proteins
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Fig. 5 Comparison of the histograms of the biophysical parameters κ and D estimated respectively in 8 TIRFM image sequences depicting TfR (a)
and in 8 TIRFM image sequences depicting Langerin (b)

as 20% of TfR events. This second peak does not appear in
the histogram of Langerin. In contrast, much more slow-
release events are found in Langerin sequences, around
0.1f−1.

These results are consistent with those reported in [36],
in which a simple 1D+time intensity signal was used to
classify fusion events as slow or fast. However, our model
and method supply a dramatically improved description
of the fusion process, with a complete parameter dis-
tribution. Moreover, we supply estimates of biophysical
parameters instead of the image-related parameter of [36].

A second conclusion can be drawn, regarding the diffu-
sion coefficient statistics. Indeed, Langerin shows a much
higher dispersion of the estimates than TfR. To our knowl-
edge, this was never shown in the frame of vesicle fusion.
Indeed, this could not even be analyzed in previous works
[16, 36]. In [36], the diffusion was not estimated, while the
model used in [16, 17] was too simple to cope with slow-
release events. Furthermore, as reported in [17], even for
fast-release events, the estimation of D was not accurate
in [16].

Conclusion
We have proposed an original dynamical model, called
SSED, to represent the vesicle fusion to plasma membrane

at the end of the exocysotis process. It includes two
biophysical parameters, namely the release rate and dif-
fusion coefficient, and we have developed a method to
estimate them in TIRFM image sequences. After demon-
strating the efficiency and accuracy of the method on
simulated sequences, we successfully applied it to real
TIRFM images depicting TfR and Langerin proteins. The
experiments demonstrated that the release rate and dif-
fusion coefficient distributions of the two transmembrane
proteins clearly exhibit different behaviors to be further
explained by biological studies.

The proposed method could still be improved in several
directions. Instead of the quadratic criterion (12) used to
estimate the SSED model parameters, we could resort to
a robust estimation. Indeed, if the background cannot be
fully removed, a robust penalty would prevent from biased
estimation. Resorting to robust statistics [37], e.g., M-
estimators as Hampel, Huber of Tukey’s function, would
enable to correclty estimate the model parameters even in
presence of outliers, i.e., irrelevant pixels, in the estima-
tion support. If the release rate is very slow, taking cuboids
Vi’s with a longer temporal dimension would be beneficial.
Then, it would be helpful to design an automatic adap-
tation of the size of the space-time neighborhoods Vi’s.
Finally, other proteins intervene in the exocytosis process.
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Among them, Rab11/Rab11-FIP (Rab11 family of interact-
ing proteins) complexes together with cortical cytoskele-
ton elements, play a crucial role on the internal faces of the
carrier vesicles and plasma membrane. However, in order
to dynamically relate fusion-diffusion steps of the trans-
ported membrane proteins to the release mechanism of
these peripheral membrane associated complexes, diffu-
sion studies might be not restricted to 2D, and 3D TIRFM
image sequences [38] will then be necessary.
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