Randomized Quasi-Monte Carlo: An Introduction for Practitioners

Abstract : We survey basic ideas and results on randomized quasi-Monte Carlo (RQMC) methods, discuss their practical aspects, and give numerical illustrations. RQMC can improve accuracy compared with standard Monte Carlo (MC) when estimating an integral interpreted as a mathematical expectation. RQMC estimators are unbiased and their variance converges at a faster rate (under certain conditions) than MC estimators, as a function of the sample size. Variants of RQMC also work for the simulation of Markov chains, for function approximation and optimization, for solving partial differential equations, etc. In this introductory survey, we look at how RQMC point sets and sequences are constructed, how we measure their uniformity, why they can work for high-dimensional integrals, and how can they work when simulating Markov chains over a large number of steps.
Type de document :
Communication dans un congrès
12th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2016), Aug 2016, Stanford, United States. 2017
Liste complète des métadonnées

Littérature citée [66 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01561550
Contributeur : Bruno Tuffin <>
Soumis le : jeudi 13 juillet 2017 - 08:19:51
Dernière modification le : mercredi 16 mai 2018 - 11:24:13
Document(s) archivé(s) le : jeudi 25 janvier 2018 - 02:50:28

Fichier

mcqmc16tutorial-paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01561550, version 1

Collections

Citation

Pierre L'Ecuyer. Randomized Quasi-Monte Carlo: An Introduction for Practitioners. 12th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2016), Aug 2016, Stanford, United States. 2017. 〈hal-01561550〉

Partager

Métriques

Consultations de la notice

299

Téléchargements de fichiers

508