E. Acar, D. M. Dunlavy, and T. G. Kolda, A scalable optimization approach for fitting canonical tensor decompositions, Journal of Chemometrics, vol.43, issue.1, pp.67-86, 2011.
DOI : 10.1016/S0169-7439(98)00077-X

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.5541

C. A. Andersson and R. Bro, The N-way Toolbox for MATLAB, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, pp.1-4, 2000.
DOI : 10.1016/S0169-7439(00)00071-X

B. W. Bader and T. G. Kolda, Efficient MATLAB Computations with Sparse and Factored Tensors, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.205-231, 2007.
DOI : 10.1137/060676489

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.8658

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, Efficient and scalable computations with sparse tensors, 2012 IEEE Conference on High Performance Extreme Computing, pp.1-6, 2012.
DOI : 10.1109/HPEC.2012.6408676

. Mitchell, Toward an architecture for never-ending language learning, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI '10, pp.1306-1313, 2010.
DOI : 10.1109/bigdata.2014.7004203

D. J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of ???Eckart-Young??? decomposition, Psychometrika, vol.12, issue.3, pp.35-283, 1970.
DOI : 10.1007/BF02310791

V. T. Chakaravarthy, J. Choi, D. J. Joseph, X. Liu, P. Murali et al., On Optimizing Distributed Tucker Decomposition for Dense Tensors, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), p.17, 2017.
DOI : 10.1109/IPDPS.2017.86

J. H. Choi and S. V. Vishwanathan, DFacTo: Distributed factorization of tensors, 27th Advances in Neural Information Processing Systems, pp.1296-1304, 2014.

L. Grasedyck, Hierarchical Singular Value Decomposition of Tensors, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.4, pp.31-2029, 2010.
DOI : 10.1137/090764189

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.596.2561

R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an " explanatory" multi-modal factor analysis, UCLA Working Papers in Phonetics, pp.1-84, 1970.

J. Håstad, Tensor rank is NP-complete, Journal of Algorithms, vol.11, issue.4, pp.644-654, 1990.
DOI : 10.1016/0196-6774(90)90014-6

U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, GigaTensor, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.2012-316
DOI : 10.1145/2339530.2339583

O. Kaya and B. Uçar, High-performance parallel algorithms for the Tucker decomposition of higher order sparse tensors, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219316

O. Kaya and B. Uçar, Scalable sparse tensor decompositions in distributed memory systems, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.771-7711, 2015.
DOI : 10.1145/2807591.2807624

URL : https://hal.archives-ouvertes.fr/hal-01148202

T. G. Kolda and B. Bader, The TOPHITS model for higher-order web link analysis, Proceedings of Link Analysis, Counterterrorism and Security, pp.26-29, 2006.

L. D. Lathauwer and B. D. Moor, From matrix to tensor: Multilinear algebra and signal processing, Proceedings of the Institute of Mathematics and Its Applications Conference Series, pp.1-16, 1998.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000.
DOI : 10.1137/S0895479896305696

C. Ng, M. Barketau, T. Cheng, and M. Y. Kovalyov, ???Product Partition??? and related problems of scheduling and systems reliability: Computational complexity and approximation, European Journal of Operational Research, vol.207, issue.2, pp.601-604, 2010.
DOI : 10.1016/j.ejor.2010.05.034

D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, Batch and Adaptive PARAFAC-Based Blind Separation of Convolutive Speech Mixtures, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.6, pp.1193-1207, 2010.
DOI : 10.1109/TASL.2009.2031694

D. Nion and N. D. Sidiropoulos, Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar, IEEE Transactions on Signal Processing, vol.58, issue.11, pp.5693-5705, 2010.
DOI : 10.1109/TSP.2010.2058802

I. Perros, R. Chen, R. Vuduc, and J. Sun, Sparse Hierarchical Tucker Factorization and Its Application to Healthcare, 2015 IEEE International Conference on Data Mining, pp.943-948, 2015.
DOI : 10.1109/ICDM.2015.29

URL : http://arxiv.org/abs/1610.07722

S. Rendle and T. S. Lars, Pairwise interaction tensor factorization for personalized tag recommendation, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.81-90, 2010.
DOI : 10.1145/1718487.1718498

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9262

S. Rendle, B. M. Leandro, A. Nanopoulos, and L. Schmidt-thieme, Learning optimal ranking with tensor factorization for tag recommendation, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.727-736, 2009.
DOI : 10.1145/1557019.1557100

N. D. Sidiropoulos, R. Bro, and G. B. Giannakis, Parallel factor analysis in sensor array processing, IEEE Transactions on Signal Processing, vol.48, issue.8, pp.2377-2388, 2000.
DOI : 10.1109/78.852018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4217

S. Smith and G. Karypis, A Medium-Grained Algorithm for Sparse Tensor Factorization, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp.902-911, 2016.
DOI : 10.1109/IPDPS.2016.113

S. Smith, N. D. Ravindran, G. Sidiropoulos, and . Karypis, SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication, 2015 IEEE International Parallel and Distributed Processing Symposium, pp.61-70, 2015.
DOI : 10.1109/IPDPS.2015.27

P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos, Tag recommendations based on tensor dimensionality reduction, Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pp.43-50, 2008.
DOI : 10.1145/1454008.1454017

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.1437

M. A. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: TensorFaces, in Computer Vision?ECCV, pp.447-460, 2002.

R. N°-9080 and R. Centre-grenoble-?-rhône-alpes, Inovallée 655 avenue de l'Europe Montbonnot 38334 Saint Ismier Cedex Publisher Inria Domaine de Voluceau -Rocquencourt BP 105 -78153 Le Chesnay Cedex inria, pp.249-6399