Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis

Abstract : White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets.
Liste complète des métadonnées

Littérature citée [77 références]  Voir  Masquer  Télécharger
Contributeur : Olivier Colliot <>
Soumis le : vendredi 14 juillet 2017 - 18:45:25
Dernière modification le : mardi 11 décembre 2018 - 01:22:30
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 21:34:32


Fichiers produits par l'(les) auteur(s)



Kuldeep Kumar, Christian Desrosiers, Kaleem Siddiqi, Olivier Colliot, Matthew Toews. Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis. NeuroImage, Elsevier, 2017, 158, pp.242 - 259. 〈10.1016/j.neuroimage.2017.06.083〉. 〈hal-01562449〉



Consultations de la notice


Téléchargements de fichiers