A. Mangi, N. Noiseux, D. Kong, H. He, M. Rezvani et al., Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nature Medicine, vol.9, issue.9, pp.1195-1201, 2003.
DOI : 10.1038/nm912

M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.25-1015, 2007.
DOI : 10.1161/01.RES.86.5.541

M. X. Doss, J. M. Di-diego, R. Goodrow, Y. Wu, J. M. Cordeiro et al., Maximum Diastolic Potential of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Depends Critically on IKr, PLoS ONE, vol.74, issue.7, p.40288, 2012.
DOI : 10.1371/journal.pone.0040288.t005

J. He, Y. Ma, Y. Lee, J. A. Thomson, and T. J. Kamp, Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes: Action Potential Characterization, Circulation Research, vol.93, issue.1, pp.32-39, 2003.
DOI : 10.1161/01.RES.0000080317.92718.99

A. Blazeski, R. Zhu, D. Hunter, S. Weinberg, K. Boheler et al., Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells, Progress in biophysics and molecular biology, pp.178-195, 2012.
DOI : 10.1016/j.pbiomolbio.2012.07.012

S. Peng, A. E. Lacerda, G. E. Kirsch, A. M. Brown, and A. Bruening-wright, The action potential and comparative pharmacology of stem cell-derived human cardiomyocytes, Journal of Pharmacological and Toxicological Methods, vol.61, issue.3, pp.277-286, 2010.
DOI : 10.1016/j.vascn.2010.01.014

C. Robertson, D. D. Tran, and S. C. George, Concise Review: Maturation Phases of Human Pluripotent Stem Cell-Derived Cardiomyocytes, STEM CELLS, vol.86, issue.4, pp.829-837, 2013.
DOI : 10.1016/S0006-3495(04)74271-X

K. Harris, M. Aylott, Y. Cui, J. Louttit, N. Mcmahon et al., Comparison of electrophysiological data from human-induced pluripotent stem cell?derived cardiomyocytes to functional preclinical safety assays, toxicological sciences, 2013.

S. R. Braam, L. Tertoolen, A. Van-de-stolpe, T. Meyer, R. Passier et al., Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes, Stem Cell Research, vol.4, issue.2, pp.107-116, 2010.
DOI : 10.1016/j.scr.2009.11.004

O. Caspi, I. Itzhaki, I. Kehat, A. Gepstein, G. Arbel et al., In Vitro Electrophysiological Drug Testing Using Human Embryonic Stem Cell Derived Cardiomyocytes, vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes, pp.161-172, 2009.
DOI : 10.1089/scd.2007.0280

L. Bowler, K. Harris, D. Gavaghan, and G. Mirams, Simulated microelectrode array recordings from stem cell-derived cardiomyocytes, Journal of Pharmacological and Toxicological Methods, vol.81, issue.380, 2016.
DOI : 10.1016/j.vascn.2016.02.148

I. Cavero, J. Guillon, V. Ballet, M. Clements, J. Gerbeau et al., Comprehensive in vitro Proarrhythmia Assay (CiPA): Pending issues for successful validation and implementation, Journal of Pharmacological and Toxicological
DOI : 10.1016/j.vascn.2016.05.012

URL : https://hal.archives-ouvertes.fr/hal-01328481

M. Boulakia, F. Raphel, P. Zitoun, and J. Gerbeau, Toward transmembrane potential estimation from in vitro multi-electrode field potentials using mathematical modeling, Journal of Pharmacological and Toxicological Methods, vol.75, pp.168-169, 2015.
DOI : 10.1016/j.vascn.2015.08.038

N. Zemzemi, M. Bernabeu, J. Saiz, J. Cooper, P. Pathmanathan et al., Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials, British Journal of Pharmacology, vol.89, issue.3, pp.718-733, 2013.
DOI : 10.1161/01.CIR.93.3.407

URL : https://hal.archives-ouvertes.fr/hal-00764102

T. Brennan, M. Fink, and B. Rodriguez, Multiscale modelling of drug-induced effects on cardiac electrophysiological activity, European Journal of Pharmaceutical Sciences, vol.36, issue.1, pp.62-77, 2009.
DOI : 10.1016/j.ejps.2008.09.013

N. Zemzemi and B. Rodriguez, Effects of L-type calcium channel and human ether-a-go-go related gene blockers on the electrical activity of the human heart: a simulation study, Europace, vol.17, issue.2, pp.326-333, 2015.
DOI : 10.1093/europace/euu122

URL : https://hal.archives-ouvertes.fr/hal-01064429

M. Paci, J. Hyttinen, K. Aalto-setälä, and S. Severi, Computational Models of Ventricular- and Atrial-Like Human Induced Pluripotent Stem Cell Derived Cardiomyocytes, Annals of Biomedical Engineering, vol.104, issue.Pt 1, pp.2334-2348, 2013.
DOI : 10.1161/CIRCRESAHA.108.192237

B. Hille, Ion channels of excitable membranes, 2001.

C. Moulin, A. Glì-ere, D. Barbier, S. Joucla, B. Yvert et al., A New 3-D Finite-Element Model Based on Thin-Film Approximation for Microelectrode Array Recording of Extracellular Action Potential, IEEE Transactions on Biomedical Engineering, vol.55, issue.2, pp.683-692, 2008.
DOI : 10.1109/TBME.2007.903522

J. Sundnes, G. T. Lines, and A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Mathematical Biosciences, vol.194, issue.2, pp.233-248, 2005.
DOI : 10.1016/j.mbs.2005.01.001

R. Gulrajani, M. Trudel, and L. Leon, A Membrane-Based Computer Heart Model Employing Parallel Processing, Biomedizinische Technik/Biomedical Engineering, vol.46, issue.s2, pp.20-22, 2001.
DOI : 10.1103/PhysRevLett.84.1343

M. Pekkanen-mattila, H. Chapman, E. Kerkelä, R. Suuronen, H. Skottman et al., Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype, Experimental Biology and Medicine, vol.42, issue.4, pp.522-530, 2010.
DOI : 10.1016/j.yjmcc.2006.10.019

E. Carmeliet and K. Mubagwa, Antiarrhythmic drugs and cardiac ion channels: mechanisms of action, Progress in biophysics and molecular biology, pp.1-72, 1998.
DOI : 10.1016/S0079-6107(98)00002-9

G. Mirams, M. Davies, Y. Cui, P. Kohl, and D. Noble, Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing, British Journal of Pharmacology, vol.6666, issue.Suppl 2, pp.932-945, 2012.
DOI : 10.1007/978-3-642-21028-0_32

G. Mirams, Y. Cui, A. Sher, M. Fink, J. Cooper et al., Simulation of multiple ion channel block provides improved early prediction of compounds??? clinical torsadogenic risk, Cardiovascular Research, vol.91, issue.1, pp.53-61, 2011.
DOI : 10.1093/cvr/cvr044

D. Bottino, R. C. Penland, A. Stamps, M. Traebert, B. Dumotier et al., Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart, Progress in biophysics and molecular biology, pp.414-443, 2006.
DOI : 10.1016/j.pbiomolbio.2005.06.006

M. Paci, S. Severi, and J. Hyttinen, Computational modeling supports induced pluripotent stem cell-derived cardiomyocytes reliability as a model for human lqt3, Computing in Cardiology Conference (CinC), pp.69-72, 2014.

Y. Qu and H. M. Vargas, Proarrhythmia Risk Assessment in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using the Maestro MEA Platform, Toxicological Sciences, vol.147, issue.1, pp.286-295, 2015.
DOI : 10.1093/toxsci/kfv128

A. Zahradníková, I. Minarovi?, and I. Zahradník, Competitive and Cooperative Effects of Bay K8644 on the L-Type Calcium Channel Current Inhibition by Calcium Channel Antagonists, Journal of Pharmacology and Experimental Therapeutics, vol.322, issue.2, pp.638-645, 2007.
DOI : 10.1124/jpet.107.122176

A. Bucchi, M. Baruscotti, M. Nardini, A. Barbuti, S. Micheloni et al., Identification of the Molecular Site of Ivabradine Binding to HCN4 Channels, PLoS ONE, vol.122, issue.1, p.53132, 2013.
DOI : 10.1371/journal.pone.0053132.s004