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Abstract

This article is devoted to the comparison of numerical integration methods for nonsmooth multibody dynamics with
joints, unilateral contacts and impacts in an industrial context. With an event{driven strategy, the smooth dynamics,
which is integrated between two events, may be equivalently formulated as a Di erential Algebraic Equation (DAE) of index
1, 2 or 3. It is well-known that these reformulations are no longer equivalent when a numerical time{integration technique
is used. The drift-0 e ect and the stability of the numerical scheme strongly depend on the index of the formulation.
But, besides the standard properties of accuracy and stability of the DAE solvers, the event{driven context imposes some
further requirements that are crucial for a robust and e cient event-driven strategy. In this article, several state{of{the{art
numerical time integration methods for each formulation are compared: the generalized- scheme for index-3 formulation
and stabilized index-2 formulation, (Partitioned) Runge{Kutta Half{Explicit Method of order 5 (HEM5 and PHEM56)
for index-2 DAEs with projection techniques, and Runge-Kutta explicit scheme of order 5, the Dormand-Prince scheme
(DOPRIS), for index-1 DAEs with projection techniques (MDOPS5). We compare these schemes in terms of e ciency,
violation of the constraints and the way they handle sti dynamics on numerous industrial benchmarks, where a CAD
software is in this loop. One of the major conclusions is that the index-2 DAEs solvers prove to be better than other
schemes to maintain low violations at position and acceleration levels. The best compromise allows us to design e cient

event{driven solvers. When the dynamics is sti, implicit schemes outperform explicit and half-explicit methods which



are sometimes unable to compute the dynamics when the system's frequency range is wide. Furthermore, in industrial
context, some solvers fail to reproduce the properties that they enjoy in theory. This is particularly true for half-explicit

schemes when the Jacobian of the constraints has not full rank.

1 Introduction

The aim of this article is the comparison of numerical integration methods of nonsmooth multibody dynamics with joints,
unilateral contacts and impacts in an industrial context. There are two major integration strategies that are used to solve
the nonsmooth dynamics of multi-body dynamical systems: event-detectingtime{stepping schemes (a.k.a. event{driven
schemes) andevent{capturing schemes (a.k.a simply time{stepping schemes). In time-stepping schemes [49, 40, 5, 29, 3],
the formulation of the dynamics in terms of measure di erential inclusions enables to simultaneously handle the smooth
dynamics and the non-smooth events. In event-driven schemes, the events at discrete times (impact, take-o, transitions
sliding/sticking if friction is taken into account) and the non impulsive dynamics are separated. The detection of the
occurrence of an event is a crucial step. The smooth dynamics between two events may be equivalently formulated as
Di erential Algebraic Equations (DAE) of index 1, 2 or 3. The resulting formulation is then integrated with any classical
numerical scheme [32, 33]. We refer to [2, 3] for a detailed comparison between these two strategies. In this paper, we choose
to study the numerical time{integration in the context of an event{driven strategy. This choice is motivated by the needs of
high accuracy simulations of the smooth phases between two events.

It is well-known that the reformulations as index 1, 2 or 3 DAESs are no longer equivalent when a time{integration technique
is used [16]. The drift-o e ect and the stability of the numerical scheme strongly depend on the index of the formulation.
But, besides the standard properties of accuracy and stability of the DAE solvers, the event{driven context imposes some
further requirements that are crucial for a robust and e cient event-driven strategy. For multibody systems with contact, the
index reduction technique, obtained by di erentiating the constraints, requires sometimes further smoothness assumptions of
the constraints that are not necessarily satis ed in practical situations with contact. From this point of view, low kinematic
level formulations, that is, high index formulation, are more suitable. Furthermore, in an event{driven strategy, unilateral
constraints are classi ed into several index sets that describe the status of the contact: open, closed, closed with a vanishing
velocity, etc. The correct approximations and stability of the index sets depend on the ability of the numerical time{stepping
schemes to control the violations of both position and velocity level constraints and the accuracy and the stability of the

Lagrange multipliers, that are related to the constraints at the acceleration level.

1.1 State of the art

The application of event-driven approach to the nonsmooth multibody systems with contacts, using any Ordinary Di erential

Equations (ODE) or DAE solver for the non impulsive phases and using an accurate detection of the events thanks to root



nding procedures [57], dates back to the 1990's. In [41], a variable structure system is introduced that corresponds to the
introduction of the index sets of active constraints. In [30, 25, 1], the extensive use of complementarity approach enables
the design of e cient event{driven algorithms at least for planar systems with contact and Coulomb's friction. All of these
references use the standard index-1 formulation of the dynamics with explicit Runge{Kutta solvers. Except in the original
work of [37] where the comparison between several ODE solvers is made, and the in uence of the precision of the root{
nding procedure is studied in an event{driven context, the comparison of ODE/DAE solvers for multibody systems in an
event{driven context has not been further studied.

Besides the root- nding procedures, the e ciency of the event{driven scheme relies on the e ciency of the time{stepping
schemes within the smooth phases. In the context of bilateral constraints, this question has been deeply discussed in [24,
61, 33, 59] and comprehensive numerical comparisons can be found in [33, Section VII.7] and the test set for IVP solvers
suite [47]. Let us summarize the main approaches in the following paragraphs.

When an index-1 formulation is chosen, any ODE solver may virtually be applied to the system. For non sti systems,
the use of explicit high order Runge{Kutta method with projection techniques to control the drift-o e ect is a popular
choice. Let us cite for instance the DOPRI5 solver [32] with its modi cation taking into account the projection MDOPS5 [58].
We have retained the latter solver for our comparisons. We can also cite the use of extrapolation techniques for index-1
formulation together with projection techniques as in [44, 45]. Comparisons of these approaches have been done in [54]. In
[34, 35, 51], the authors transform the initial DAE describing the dynamics of a multibody system into a State Space ODE
(SSODE) by using the technique of coordinate partitioning. The obtained SSODE, describing the dynamics using only the
independent coordinates, is solved using the SDIRK (Singly Diagonally Implicit Runge Kutta) algorithm [51].

An alternative approach, also for non sti systems, is the use of half{explicit Runge{Kutta schemes for the index-2
formulations. The approach tackles the problem at the velocity level and avoids the di erentiation of the constraints and
their evaluation at the acceleration level. One of the main solvers of this family dedicated to Lagrangian mechanical systems
is a Runge{Kutta Half{Explicit Method of order 5 (HEM5) developed in [15]. It enables a drastic reduction of the drift-o
e ect [33, 4]. In [6], Arnold makes a classi cation of half-explicit methods, and explains the limitations of some of them to
deal with the algebraic constraints, which leads to an order drop, and proposes a new class of methods that handles this
issue that yields Partitioned Half{Explicit Method as PHEM56 [50, 11].

For sti systems, the Backward Di erentiation Formulae (BDF) method with index-2 stabilized formulation, based on
the Gear{Gupta{Leimkuhler(GGL) method [26], is the most popular method in industrial simulation software for smooth
constrained systems. Nevertheless, higher order multi{step methods are not the most relevant methods in the context of an
event-driven approach, since the change in the active closed contacts implies a reinitialization of the time{stepping schemes.
Concerning the one{step methods, index-2 stabilized formulations based on the Gear{Gupta{Leimkuhler(GGL) method have
also been integrated by implicit Runge{Kutta solvers such as RADAU5 [33] and the generalized{ schemes [39, 46, 7, 8].

The RADAUS was set aside mainly because the targeted applications of sti systems come from the exible multi{body



dynamics. We have preferred the generalized{ scheme for its lower memory requirement and its ability to control the
numerical damping, which is a important feature for end-users in mechanical engineering. Furthermore, these methods, due
to their low order and their ability to treat index-2 formulation, and even index-3 formulations, are good candidates for a

time{stepping scheme for sti systems in an event{driven framework.

1.2 Objectives and outline of the paper

In this article, several state{of{the{art numerical time integration methods for each formulation are compared: the generali-
zed- scheme for the index-3 formulation and the stabilized index-2 formulation, (Partitioned) Runge{Kutta Half{Explicit
Method of order 5 (HEM5 and PHEM56) for index-2 DAEs with projection techniques, and Runge-Kutta explicit scheme of
order 5, the Dormand-Prince scheme (DOPRI5), for index-1 DAEs with projection techniques (MDOP5).

We compare these schemes in terms of e ciency, violation of the constraints and the way they handle sti dynamics.
Points of comparison include the violation of the constraints which is an important feature when we have to update the index
sets of the active unilateral constraints, numerical e ciency and capability of handling sti ness. Comparisons are performed
on numerous industrial benchmarks that contain several nonsmooth additional e ects, central in our study, such that the
use of CAD description, with all the geometric imperfections related to the design, also introducing discontinuities in the
contact surface description.

The motivation behind this work is twofold:

Firstly, we want to compare several numerical schemes in terms of their e ciency when they are used to compute the

dynamics of complex mechanical systems with a large number of degrees of freedom, joints and contacts.

Secondly, we want to analyze these schemes in terms of violation of the constraints at the position, velocity and

acceleration levels.

We would like to draw a particular attention to the latter point. The violation at the position level means that the joint
constraints are not satis ed anymore. From a numerical standpoint, the violation of the position and velocity constraints can
lead to serious problems when using an event-driven scheme, because of the unavoidable necessary numerical thresholds for
the evaluation of the index sets. Indeed, event-driven schemes are sensitive to these thresholds; this point will be made clear
later. In addition, using a CAD description for the geometry makes it sometimes di cult for the detection of impact, and
therefore for the update of the set of active constraints. At the other end of the spectrum, imposing the constraints at the
position and using index-3 formulations may lead to numerical artifacts and oscillations in the Lagrange multipliers [20, 18].
Such artifacts yield wrong forecasts for the release and activation of the unilateral constraints.

This work focuses more on the practical use of numerical integration methods in the eld of multibody dynamics, than on
their theoretical aspects and convergence properties, by studying several methods on a wide range of multibody mechanisms.

Very few papers discuss the performances of humerical methods on industrial benchmarks, among them let us cite the work



of Negrut [51] and Arnold [7]. On industrial examples, theoretical properties are sometimes not su cient to make a robust
solver in practice, particularly when the geometric constraints are evaluated through a CAD library and when the Jacobian
matrix of the constraints has not full rank (see discussion in Section 4.5).

The outline of the article is as follows. In Section 2, we present a description of the principles of the event-driven scheme
that is used. A brief presentation of the numerical methods to be used for the simulations is discussed in Section 3. In

Section 4, we present a deeper comparison on industrial benchmarks. Conclusions end the article in Section 5.

2 Strategies of the integration of the dynamics with contact
In this section, we recall the problem, then we introduce the de nition of the index sets describing the status of the contact,

and nally, we present the general algorithm of the event-driven scheme.

2.1 Problem setting

Using the Lagrangian formalism, the dynamics of a mechanical system submitted tan unilateral and bilateral constraints,

with initial conditions at an initial time tg given by q(tg) = ¢ and v(tg) = Vg, can be described by the following equations

of motion: 8
M (g)v. = F(g;vit)+ G (q)
1)
% g ()=0; 2B
0 g(g°~? 0, 2U;
where :

g2 R" denotes the vector of generalized coordinates and = g is the vector of generalized velocities,
M (q) 2 R" " is the symmetric positive de nite matrix of inertia,
F (q;v;t) comprises the external applied loads and the non linear inertial terms,

g(g) 2 R™ is the vector of constraints imposed to the system,B N denotes the index set of bilateral constraints
resulting from the joint conditions, while U N denotes the set of unilateral constraints describing the contact

conditions. The set of all constraints is denoted bylo = B[ U.

G(q) is the Jacobian matrix of the constraints:

- en

@q =1 Tg(q) 2 R™ " wherer g(g) = (r g1(9); 5T gm(@) 2 R™ ™ is the gradient matrix

G(q)



2 R™ is the Lagrange multipliers vector associated with the constraints.

It is worth noting that the Newton-Euler formalism can be formulated equivalently with the introduction of an operator
T (q) of appropriate dimension such thatgq= T(qg)v where g contains the parameterization of the nite rotation.

The complementarity condition in (1) illustrates the fact that there is a reaction force for an unilateral constraint

2U
only when the bodies are in contact,g (q) > 0) =0;

2 f Ug. Furthermore, since there is no adhesion e ect, the
reaction force has to be non negative.

Body B

Figure 1: Signed distance between two bodie$ and B at contact

Fig.1 illustrates one unilateral constraint g de ned as the signed distance betweerC, and Cg. In this case, g
(Cs Ca):n ,wheren

is the outward normal vector with respect to body A at Ca.

We suppose that impacts occur in in nitely short periods so that the displacements of the bodies during the collisions can

be neglected, and we use the Moreau impact law. For the closed contacts index set(q) = f 2 1ojg (g) = 0g, we compute

the impulse p(tn) and the post-impact velocity v* (t,) by solving the Newton impact equations at the time of impact t,

: M (a(ta))(V* (tn) v (ta)) = pltn)
3 Uy " (th) = G (atn))V* (tn)
Uy (1) = G (at)v ()
% Pta)= G T(a(tn))Py (tn) )

211
0=Uy " (th)= Uy (ta); 2B;

0 Ui (th)+ el (tn)? Py(ta) O 2U;

where 8
2V ()= fim o v()
S B ®3)
Vv (th) = ' Itim<t v( ):



The complementarity condition in (2) describes the Signorini condition written at the velocity level and augmented by the
Moreau impact law [48]. In (2), Uy is the vector of normal relative velocities andPy, is the vector of local impulses at the
contact points. The scalare 2 [0; 1] is the global kinematic coe cient of restitution. When the inertia matrix is invertible,
problem (2) can be reduced to local unknownsU, and Py, computed by solving the following Linear Complementarity
Problem (LCP) 8
< Uy (th) = (At )M H(a(ta))GT (a(ta)) P (tn) + Uy (tn)
© 0 Ui(ta)+ eUy(tn) ? Pu(ty) O

The LCP matrix G(q(ta))M 1(q(tn))GT (g(t,)) is called the Delassus matrix. Equation (4) describes the so-calledontact-

(4)

impact LCP.

2.2 De nition of the index of a DAE

In the literature [16, 24], the di erential-index of a DAE is the number of di erentiations of this DAE that must be performed
in order to transform it into an ODE in terms of the independent variables q(t);v(t) and (t). Let us de ne the index set of

closed contacts with a vanishing relative velocity

l2(t)= B[f 2Ujg (qt))=0;G (at))v(t)=0; () 0Og (5)

For a constrained multibody system, when the contacts are closed for a non trivial period of time, that is for the contact

2 1,(t) for all t 2 [ta;ty];tp >t 4, the dynamics of the system is described with the following index-3 DAE
8

gq=v
M (g)v.= F(a;vit)+ G'(q)
g(@=0; 21, (6)
%g(%)w; 21
=0; 2lgnly;

For the sake of readability, we omit the time argumentt in the index setslg, |, as we have already done for the variables
that depend on time. It is well known that index-3 di erential algebraic equations are di cult to handle numerically [59].
Therefore, the dynamics is usually solved as an ODE by reducing the original index 3 of the system to 1. It amounts to solving
the problem at the acceleration level by di erentiating twice the constraints. Index reduction consists in di erentiating w.r.t

time the constraints as many times as necessary to get a set of equations that may be solved using methods for lower index



problems. Hence, if the constraintg( ) is di erentiated once with respect to time, one obtains the following index-2 DAE

G(Q)V:O; 21, (7)

8
q=v
% M (g)v.= F(a;v;t)+ G (0)
g (m)=0; 21>

G (p)vo=0; 213

=0; 2lgnly;
where vy is the initial velocity.

If g(:) is di erentiated twice, one gets the index-1 DAE
8
g=Vv
M (gv.= F(q;v;+ G (q)

dG (q)
dt

g (®)=0; 21 (8)

G (gv+ v=0; 21,

G (p)vo=0; 21,
dG
G (q)vo + F(%)VOZO; 21,
=0; 2lgnly:

The system (8) can be written using matrices as
0 10 1 0 1
T F(qg;v;t
@M@ ¢ Wigta.e LIV A,
G (9 0 i v

where 2 |,. When the Delassus operatorG ()M (q)G T (q) is invertible, the DAE (6) is of index 3, and the index-1

9)

DAE (8) can be rewritten as an ODE of the form y = f (y;t), or more explicitly
0 1 0 1

@%ar-@ . v A (10)
L M YQGT ((G (M Y(@GT (d) (C-v+ G (M YQF(q;v;t)+ M HAF(a;v;1)

It can be checked that the dynamics in (10) renders the manifoldf (q;Vv)jg (9)=0; G (gv=0; 2 I,g invariant. Under
the Lipschitz continuity of the right-hand side in (10), a unique solution ( g; V) of (10) is guaranteed. If in addition the initial
values (p; Vo) satisfy the position and the velocity constraints, that is to say g(gp) = 0 and G(gp)vo = 0, then the solution
of (10) satis es the initial problem in (6).

In the case of unilateral constraints, arelative degreecan be de ned as in [3] which can be seen as the counterpart of

the di erential index for DAEs. We can adopt the same principle as for bilateral constraints and write the complementarity



relation at the velocity or the acceleration level. Indeed, the complementarity relation 0 g(q) ? 0 can be formulated

at the velocity level as

if g(g=0;then 0 G(q)v? 0;
(11)
else =0:

or at the acceleration level as

- d*g(q)

if g(g=0; G(gv=0; then O ? 0:
dt2 (12)

else =0:

We refer to [28] for a rigorous derivation of the previous relations.

2.3 The abstract algorithm of an event-driven scheme
In the event-driven strategy, three index sets are generally introduced in order to characterize the state of the contacts:
the index set |, of all possible constraints to which the system is submitted:lo = B[ U,

the index set |, of contacts active in position:
()= B[f 2Ujg (qt))=0g; (13)

the index set |, of contacts that are active in position and velocity, or closed contacts , de ned in (5).

The occurrence of an event leads to a change in the index seltg and | ,. When an event occurs, the dynamics is updated after
computing the new initial conditions at the switching time (time of occurrence of an event) with some suitable algorithm.
These initial conditions are used to continue the time integration up to the next event. The event-driven scheme used in this
paper is illustrated in Fig.2. For more details on event-driven schemes, we refer to [3, 60, 49].

Some steps in the algorithm in Fig.2 deserve further consideration:

Update the index sets.Some numerical thresholds are required to evaluate equalities and inequalities in the de nition of
the index setsl; and 1, in (13) and (5). For that purpose, we write in the numerical practice g (q) 0;G (v iand

3 for some positive scalar values;;i = 1;2;3. Besides the problems induced by the oating point arithmetic,
such thresholds are mandatory to stabilize index sets when some approximation errors are made by the numerical

integrators. This makes the event-strategy particularly sensitive to the violation of the constraints.

Correct the violated constraints. For a closed constraint over a nontrivial period of time, that is 2 1,(t), some
violations may appear due to some approximation errors. The violated constraints have to be brought back to the
admissible manifold. As an example, the strategy of Lubich [33, Chapter 7] may be used. Similar projection techniques

can be found in [56, 23, 54]. The same procedure is also applied after an impact and a changd of



Set the initial conditions.

Initialize the index sets

‘ Solve the smooth dynamics (6)

‘ or (7) or (8) or (10) from t,

to th+1 = ty + h (see Sec.3)

|

Handle the

event at t?. ye

Did an event
occur at

t?  ther ?

———

Go to the next step.

th ;== min(t ;the)

Violation beyond

Correct the vio-
user-de ned )
lated constraints
tolerance?

‘ Update the index ’

‘ setsl, and |, ’

Figure 2: The event-driven scheme. Synopsis of a one-step integration.
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Handle the event.If many events are detected during the time step, then their times of occurrence are compared and

the rst event to happen is the rst to be handled. There are many types of events, including:

1. change in the loading conditions.

2. change in the sign of a Lagrange multiplier for a unilateral constraint, indicating a take-o event.
3. impacts (activation of constraints), in this case we solve the impact LCP (4) att?.
4

. change in the normal vector that leads to a jump in the constraints and contact forces.

3 The time integration schemes

Three numerical methods have been selected for this study. Namely, generalizedscheme, HEM5 and DOPRIS5.

3.1 Anindex{ 3 and index- 2 DAE integrator: the generalized- scheme

The Newmark family of schemes [53, 42], widely used in the eld of linear structural dynamics, has also been applied to the
simulations of multibody systems. This second-order accuracy scheme is unconditionally stable for a linear dynamics, for a
correct choice of parameters. However, the use of dissipation leads to a drop in its order. In [21, 36, 20], Chung and Hulbert,
and then other authors proposed the generalized- methods, a family of schemes that generalizes all the HHT methods and
whose main characteristic is to properly deal with the high frequencies, while keeping the"® order of the method. Cardona
and Geradin [20] adapted the method to compute the dynamics of multibody systems with joints. Contributions in the
development and application of these schemes in multibody dynamics are found in [18] for an analysis of convergence of the
index-3 version, and in [52, 38, 39, 46, 7, 8] for convergence analysis and stabilization techniques. Since there exist slightly
di erent versions in the literature, let us recall there the variant that we use in the comparison. The dynamics (6) is written
at time tp+; as 8
% Gh+1 = Vn+1
M (Gh+1 )ehet = F(Chet;Vnet stnes )+ GT (Ghat) nat (14

9(th+1)=0:
Let us introduce the acceleration-like variablea, de ned by the recurrence relation

(1 m)an+1 + man = (1 f)8h+1 + O (15)

At the beginning of the simulation, this variable is initialized as ay = €. The following di erence equations relate ¢,+1 ,

Vh+1 and an, an+1 : 8 1
2 ht = G+ vy + h2(S Dan + h?ana
N 2 (16)
* Vp+1 = Vo + h(1 Jan + han;

11



where the constants ¢, 1, and are suitably chosen so that the scheme is stable for the linear dynamics. The
numerical damping is made easier by introducing the so-calledpectral radius parameter ; . Indeed, ; = 0 corresponds
to asymptotic annihilation of the high frequencies, while ; = 1 corresponds to no numerical damping. The algorithm is
unconditionally stable [18] if the coe cients are chosen such that m = (2 1 1)=( 1 +1) < 1=2; ¢ = 1=, +1) <
1=2; =1=2+ ; m > 1=2; =1=4( +1=2)°for ; < 1. Since the generalized- scheme is inherently a linear multi|
step method, this choice is only valid for a xed time{step and yields an order drop otherwise. For a variable time{step, we
refer to [19, 39] for an improved rule.

The scheme is based on prediction and correction steps where some Newton iterations are performed in order to solve

the dynamics and the constraint residualsRy and R¢,q de ned by

8

< Rg(Oh+1;Vn+1itnet; n+1) = M (Gh+1 )€h+1 F(Oh+1 Vet ther) GT(qu) n+1 (17)

Reg(th+1) = 9(Ch+1);

where ¢,+1 and vn.1 are replaced byg,+1 thanks to (15) and (16). The Newton iterations amount to solving the following

linear system at the iteration k

0 1 0 1
q Ra(0f.1 s VKL ither s Kia)
SQ(qlq(+1;Vr|§+1;tn+l; n+l)@ A= @ e n+1k oA ; (18)
Req(h+1)
with the iteration matrix
0 . . 1
M K + C k ;Vk it + K k ;Vk it : k GT k
Sq(qlq(+1 ;Vrli+1 ;tn+l ; n+l) = @ (%+l) t(on+l nt nl:l) t(qu nt n n+l) (On+1 )A (19)
G(%+1)
and where ° = hzl(limf) °= e Ky = @M%;G” is the sti ness matrix and C; = %'l: is the damping matrix. Note

that this algorithm aims at maintaining the constraints at the position level, but it can also be reformulated to write the
constraints on the velocity level or on the acceleration level [46]. When considering the constraints at the velocity level, the

problem is formulated as an index-2 DAE whose discretization is given with the rst equation of (14) together with

Rew (Oh+1 3 Vne1) = G(Oh+1 )Va+1 =0: (20)

In this case, the correction step is performed using Newton iterations to solve the linear system

0 1 0 1
v Rd(qlq( ;Vk ithet) n+1)
Sv(qlq(+1 ;Vrli+1 ) n+1)@ A = @ * Eﬂ T( " A ; (21)
G(dh+1 )Vn+1
with the iteration matrix
0 1
0 0
M (o1 )+ Co(dfor VKL itne) ¥ Ke(oy VKL sthess Ky GT (k.
S\,(qif,+1;V,§+1;tn+1; )= @ (%h+1) t(Oh+1 3 Va1 n+1k) t(Qh+1 i Vn+t s tnet s fa) (o 1)A 22)
G(th+1) 0

12



where °= "y and ‘= b

The generalized- method can be adapted to enforce both position and velocity constraints, based on the stabilization
technique also called the Gear{Gupta{Leimkuhler(GGL) method [26] (see for instance [38, 39, 46]). Since there is no
consensus on the generalized-scheme for index-2 stabilized formulation, we recall here the scheme that has been used in
the comparison. This has also been done in the context of the simulation of the dynamics of multibody systems with both
unilateral and bilateral constraints in [17]. Let us assume a system only subject to bilateral constraints. An additional vector

of Lagrange multipliers associated with the position constraints is introduced. The augmented equations of dynamics read:

M (Q)g= F(q;v;t)+ G (0)
g(g) =0;
G(gv=0;

8
% M (g)a= M (g)v+ G'(q)
g (23)

Let us denote: g= ]vdt, U=q & &=+v,and dt . In[17], the time discretization in an event{capturing

[thitn+r ]
context is discussed. Following their conclusions on the e ciency of the algorithm, the method used in that paper is based

[t tn+

on the decoupling of the resolution at the velocity level given by the system (21) and the resolution at the position level.

The nal algorithm is based on two steps:
a correction step consisting in the resolution of (21).

enforcement of the position constraints by solving:
0 10 1 0 1
@M (q|1(+1) GT(qu(+1 )A @ q A = @ M(qh(+1)Ur|1(+1 GT(qlf.u) r|§+1 A :

(24)
G(ck+1) 0 [(c !

Algorithm 1 presents a sketch of the method.

Other options are discussed in [17]. Especially, the question of the coupling strategies between the position level and the
velocity level. A very interesting analysis is also done in [9] in a similar but di erent context. The authors consider an index-3
DAE formulation and solve a constrained mechanical system with a generalized- Lie group scheme. Since the constraints
are enforced at the position level, the hidden constraints at the velocity level are not satis ed by the time{stepping scheme.
They consider two alternative solution procedures: one is based on the stabilization of the constraints at the velocity level
as it is developed in [10], and the other one, a simple projection of the manifold de ned by the velocity constraints. It is
shown that the latter method induces instabilities and order reduction. In the scheme described in Algorithm 1, we attempt
to avoid this drawback by iterating on both levels up to convergence.

To estimate the integration error, we follow the methodology proposed by Geradin and Cardona in [27] and Negrut and

al. in [52] for the HHT schemes family. The exact value of the positions vector can be approximated by a Taylor series
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Algorithm 1

The generalized- method with stabilization of the position and the velocity constraints

Require: ¢, Vn, th
Ensure: h+1, Vn+1, n+i

man)

an+1 11 (fq’l

m

Vn+1 vh + h(1 Ja, + hanpa
th+1  Gh+ hvg+h?(3 an+ h2a..
nt1 0, ns1 O, Upss O
repeat
V; solution of (21)
Vn+1 Vhsr + V
Oh+t  Oher ¥+ S v
n+1 n+1 t
a; solution of (24)
Un+1 Unsr +  Q
Oh+1 Gh+1+ ¢
n+l n+l F

until Rg(Gh+1;Vn+1ithea; n+1)  tol @and G(Gh+1 )Vn+a

tol and g(oh+1)

tol (tol is a user de ned tolerance)
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development aroundt,:

2 3.
Gltn + )= G+ Wy + oo + 1y + O(h): (25)

The integration error is computed as
€= ths1  Ge(th + ) (26)

By substituting the expression of g,.; from (16) into (26), we get:

) 1 5 h2 h3 N
e=h*(; Jan+th®ana —& —th+ Oh): (27)
2 2 6
The third derivative q‘n of the position can be approximated by
q1 - %1 & o(h): (28)

h

By substituting this expression of Cﬁ into (27) and using the relations in (16), we obtain

1 h2 h2 .
€=tha G % Fh Fhat o(h%): (29)
Finally, the optimal step size is computed with
tol )

where s is a safety factor, tol is the user required tolerance ang corresponds to the order of consistency of the scheme. For

the generalized- method, p = 2.

3.2 Index{ 2 DAE integration scheme: HEM5 and PHEM56 with a projection technique.

HEMS5 and PHEM56 belong to the family of half-explicit RK methods which have been deeply studied in [33]. Half-explicit
methods use linear systems involving jacobian matrices that are evaluated at two di erent time instantst, + ¢ch andt, + ¢+1 h

as in (31). These systems are to be solved at each stage to evaluate the estimations of the acceleratiprand the multiplier

" 0 10 1 0 1
@ M@ CT(Qita + Gy @ Vi o _ @ FQiViitn+ ) 5 (31)
G(Qi+1:th + G421 h) 0 i r
where "
ri = (i\(a?:?)(v” +h  aay\y); (32)

j=1
and ¢ and a; are the coe cients of the method. It is worth noting that the matrix in (31) is not symmetric and that the
solution of the system exists only under 