Study on Storage Characteristic of Navel Orange Based on ANN

Abstract : In order to predict storage life of navel orange, The model for the variable regularity of total soluble sugar, total acidity, vitamin C, soluble solids, the sugar-acidity ratio in navel orange according to storage time was established based on BP artificial neural network . The results show that the multi-factor BP artificial neural network model has better predicted effect than single-factor one. When the number of the hidden layer neuron is 8, the multi-factor BP artificial neural network model of total soluble sugar, total acidity, vitamin C, soluble solids, the sugar-acidity ratio according to storage time was the most accurate, the correlation coefficient R between prediction and true value of storage time reached 0.98, the prediction and true value of the model was 0.99. As a result, the multi -factor BP artificial neural network model could be used to predict the navel orange storage life.
Type de document :
Communication dans un congrès
Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-345 (Part II), pp.667-673, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18336-2_81〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01562725
Contributeur : Hal Ifip <>
Soumis le : lundi 17 juillet 2017 - 09:49:11
Dernière modification le : mardi 18 juillet 2017 - 15:38:37

Fichier

978-3-642-18336-2_81_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Junfang Xia, Runwen Hu. Study on Storage Characteristic of Navel Orange Based on ANN. Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-345 (Part II), pp.667-673, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18336-2_81〉. 〈hal-01562725〉

Partager

Métriques

Consultations de la notice

24

Téléchargements de fichiers

9