Research on Rough Set and Decision Tree Method Application in Evaluation of Soil Fertility Level

Abstract : Clustering, rough sets and decision tree theory were applied to the evaluation of soil fertility levels, and provided new ideas and methods among the spatial data mining and knowledge discovery. In the experiment, the rough sets - decision tree evaluation model establish by 1400 study samples, the accuracy rate is 92% of the test. The results show :model has good generalization ability; using the clustering method can effectively extract the typical samples and reducing the training sample space; the use of rough sets attribute reduction, can remove redundant attributes, can reduce the size of decision tree decision-making model, reduce the decision-making rules and improving the decision-making accuracy, using the combination of rough set and decision tree decision-making method to infer the level of a large number of unknown samples.
Type de document :
Communication dans un congrès
Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-345 (Part II), pp.408-414, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18336-2_50〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01562803
Contributeur : Hal Ifip <>
Soumis le : lundi 17 juillet 2017 - 09:50:53
Dernière modification le : mardi 18 juillet 2017 - 15:38:21
Document(s) archivé(s) le : vendredi 26 janvier 2018 - 23:29:48

Fichier

978-3-642-18336-2_50_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Guifen Chen, Li Ma. Research on Rough Set and Decision Tree Method Application in Evaluation of Soil Fertility Level. Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-345 (Part II), pp.408-414, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18336-2_50〉. 〈hal-01562803〉

Partager

Métriques

Consultations de la notice

107

Téléchargements de fichiers

17