Purity Identification of Maize Seed Based on Color Characteristics

Abstract : In order to identify miscellaneous seed from maize seed accurately and rapidly, maize seed purity identification method based on color extracted from the images of both the maize crown and the maize side was proposed for improving maize seed purity. Firstly, segmentation and single extraction were carried on the original image; secondly, the color models RGB and HSV were used to extract multidimensional eigenvectors from the maize crown and the maize side; finally, multidimensional eigenvectors were projected into one-dimensional space through applying Fisher discriminant theory and K-means algorithm was carried on the new color space. The experimental results show that K-means algorithm based on one-dimensional space received through Fisher discriminant theory can effectively identify maize seed purity, and the recognition rate was over 93.75%.
Type de document :
Communication dans un congrès
Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-346 (Part III), pp.620-628, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18354-6_73〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01563417
Contributeur : Hal Ifip <>
Soumis le : lundi 17 juillet 2017 - 16:59:38
Dernière modification le : lundi 17 juillet 2017 - 17:12:12
Document(s) archivé(s) le : samedi 27 janvier 2018 - 02:40:26

Fichier

978-3-642-18354-6_73_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Xiaomei Yan, Jinxing Wang, Shuangxi Liu, Chunqing Zhang. Purity Identification of Maize Seed Based on Color Characteristics. Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-346 (Part III), pp.620-628, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18354-6_73〉. 〈hal-01563417〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

43