
�>���G �A�/�, �?���H�@�y�R�8�e�9�e�9�3

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�R�8�e�9�e�9�3

�a�m�#�K�B�i�i�2�/ �Q�M �R�N �C�m�H �k�y�R�d

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b���i�i�`�B�#�m�i�B�Q�M�% �9�X�y �A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�h�?�2 �l�b�2 �Q�7 �A�M�i�2�`�T�`�2�i���i�B�Q�M �7�Q�` �.���i�� ���+�[�m�B�b�B�i�B�Q�M ���M�/
�*�Q�M�i�`�Q�H�, �A�i�b �A�K�T���+�i �Q�M �a�Q�7�i�r���`�2 �.�2�p�2�H�Q�T�K�2�M�i ���M�/

�S�`�Q�D�2�+�i �J���M���;�2�K�2�M�i
�P�i�i�Q �o�B�M�i�2�`

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�P�i�i�Q �o�B�M�i�2�`�X �h�?�2 �l�b�2 �Q�7 �A�M�i�2�`�T�`�2�i���i�B�Q�M �7�Q�` �.���i�� ���+�[�m�B�b�B�i�B�Q�M ���M�/ �*�Q�M�i�`�Q�H�, �A�i�b �A�K�T���+�i �Q�M �a�Q�7�i�r���`�2
�.�2�p�2�H�Q�T�K�2�M�i ���M�/ �S�`�Q�D�2�+�i �J���M���;�2�K�2�M�i�X �C�Q�?�M �A�K�T���;�H�B���x�x�Q�c �S�2�` �G�m�M�/�B�M�c �"�2�M�F�i �q���M�;�H�2�`�X �j�`�/ �>�B�b�i�Q�`�v
�Q�7 �L�Q�`�/�B�+ �*�Q�K�T�m�i�B�M�; �U�>�B�L�*�V�- �P�+�i �k�y�R�y�- �a�i�Q�+�F�?�Q�H�K�- �a�r�2�/�2�M�X �a�T�`�B�M�;�2�`�- �A�6�A�S ���/�p���M�+�2�b �B�M �A�M�7�Q�`�K���@
�i�B�Q�M ���M�/ �*�Q�K�K�m�M�B�+���i�B�Q�M �h�2�+�?�M�Q�H�Q�;�v�- ���A�*�h�@�j�8�y�- �T�T�X�j�y�8�@�j�R�9�- �k�y�R�R�- �>�B�b�i�Q�`�v �Q�7 �L�Q�`�/�B�+ �*�Q�K�T�m�i�B�M�; �j�X
�I�R�y�X�R�y�y�d�f�N�d�3�@�j�@�e�9�k�@�k�j�j�R�8�@�N�n�j�9�=�X �I�?���H�@�y�R�8�e�9�e�9�3�=

https://hal.inria.fr/hal-01564648
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Use of Interpretation for Data Acquisition and
Control: I ts Impact on Software Development and

Project Management

Otto Vinter

Otto Vinter, Software Engineering Mentor, Sthensvej 2F

2630 Taastrup, Denmark
vinter@ottovinter.dk

Abstract. For over a decade, I and a number of other software engineers
introduced, developed, improved, and expanded the principle of interpretation
for data acquisition and control task descriptions; initially a simple description
and execution tool to assist plant engineers, but in the end a software
development framework for modeling, managing, and executing large, complex
projects in this domain.

Keywords: Data acquisition, interpretation, modeling, project management,
process control, software engineering

1 Introduction

For the first data acquisition and control system in 1969 for the Danish power plant
Vestkraft Blok2 (Fig. 1, Appendix 1, [1, 2]), we simply wanted to create a tool
(simple process language) that would make it easier and more flexible for plant
engineers to define their measurements and calculations, and thus dispense with the
limited and predetermined (Òhard codedÓ) operations on process data based on flags
in data tables.

In 1978, at the completion of the process control system for the Copenhagen Mail
Sorting Center, the principle of using interpretation on a data-model of the system
(Fig. 3, Appendix 2, [3, 4]) had evolved into a software engineering framework that
not only influenced the system architecture, but all phases of software development
from detailed requirements, design, coding, testing, and release staging, to project
management, estimation, planning, scheduling, configuration management, quality
procedures, and documentation.

Fig. 1. The power plants at Vestkraft. Blok2 is the tower on the left. See Appendix 1 for details.

2 The Early Data Acquisition Systems

At the beginning of the 1960s, the use of computers started to spread from pure
mathematical applications to the process control industry. However, both buyers and
suppliers were very cautious about letting the computer take full control of the
industrial processes. The acquisition of analog signals and their conversion to binary
numbers was not very well known, and disturbances from the electrically noisy
environment of high-power machinery could severely affect the low-level signals at
maximum values of 24 mA and 10 V. Consequently, the first computer systems were
only used for logging measurement data; performing simple conversions and
calculations, and presenting the operators of the plant with alarms and reports.

These data loggers were programmed like the hard-wired electronic instruments
they intended to supplement. The early programs were sequential monolithic
structures that scanned the data acquisition channels and stored them in memory
resident tables after conversion and simple alarm checks. Other programs would later
read these tables, perform calculations, and generate reports. Around the mid-1960s,
the first multiprogramming monitors appeared which allowed programs to execute in
parallel, for example, data acquisition programs could execute in parallel with report
printing programs. However, the structure of the programs did not change very much;
they still retained their basic monolithic form. Now there were just more of them,
executing in parallel.

3 The Original Idea of a Dedicated Process Control Language

In these early systems, in order to describe the processing that would take place on the
data, a number of flags (bits) were kept for the variables of each measurement, along
with its status and value. They defined what conversion routine to use, whether alarm
limits should be checked, or what other calculations should be performed. When a
data processing program scanned the data tables, it examined the flags individually (in
a specific sequence) and called the relevant routine (basically a huge case structure).

Therefore, the plant engineer who designed the actual processing had the difficult
task of defining the data tables and processing flags; and he had to do it in the
computerÕs native machine code. Due to the limited number of predefined flags and
the fixed sequence in which they were scanned, it was often difficult to describe the
processing that was desired.

We wanted to improve this situation by developing a data acquisition and control
language closer to the concepts of a plant engineer, to gain flexibility by replacing the
flags and fixed processing sequence and allowing the engineer to select the processing
from a range of language commands. The introduction of such a process language
was not new. Other dedicated data acquisition and control languages were being
developed for similar systems at that time. However, the trend was to compile such
languages into (monolithic) executable programs.

4 The Introduction of the Interpretation Principle

We could not allow ourselves the luxury of compiler for the language, because our
development system was the same as the executing system, and therefore had severe
limitations regarding memory, backing store, and peripherals. Furthermore, at that
time, compiled code was known to lack the necessary performance for real-time
applications. We therefore decided to define the language in a macro-like format
which could be easily translated into command data-structures.

The command data-structures were made self-contained, for example, the
references to the software routines to execute the macro-command and the parameters
were stored together. Since each routine was designed for the specific purpose of
handling its parameters, the length of each command data-structure could also be
calculated and stored in the structure.

As we did not have a file handling system either, we had to organize the layout of
command data-structures and data variables on the backing store ourselves. At
specific places, the translator would insert special commands to load the next segment
of command data-structures from backing store to memory, and commands to swap
segments of variables that had been updated with others which would be needed next.

At predefined intervals, a simple program (interpreter) executing in one of the
multiprogramming processes scanned the model containing the command data-
structures. It would sub-routine jump to the routine referenced in the first command
data-structure. When that routine returned, the interpreter added the stored length of
the command data-structure (parameters) to point to the beginning of the next
command data-structure, call that routine, and so on, until an end-of-data-structure

command was encountered. In this way, data processing was no longer contained in a
monolithic program; it had turned into an extremely flexible set of small dedicated
routines in a data-model that was interpreted rather than executed.

Several routines (macro-language commands) would normally have to be called to
accomplish one complete processing of a plant variable (Fig. 2), but the type of
checks, conversions, calculations, and the order in which they were performed, was
no longer limited or predefined by the real-time processing program.

Fig. 2. Processing commands for a temperature variable at Vestkraft Blok2.

5 New Opportunities Because of the Interpretation Principle

Having one central data-model, which is interpreted rather than executed, opened up
for a number of advantages in the development and customization of data acquisition
and control systems. New language commands could be easily defined; a small
dedicated component (routine and parameter description) designed, coded and added
to the macro-translator. Nothing had to be changed in the on-line systemÕs processes
(programs); the data-model was simply replaced.

In addition, defects were easier to locate because they were confined to the new
component (or the macro-translator), as there was no direct communication (e.g.
calls) between routines, only through the data values and their status.

6 Testing in a Simulated Environment

The principle of interpretation allowed us to test new components in a simulated
environment (e.g. off-line) using only those parts of the data-model that were needed
for testing the component. Dedicated test drivers and stubs (simple test commands
included in the macro-language) were inserted in the test data-model to check whether
the new routine produced the correct (expected) results under different conditions of
input data. For each call, the drivers and stubs stepped through a list of test inputs
(test cases).

A logging facility was inserted (another test component in the data-model) that
could print the data values and status used by the component (routine), along with the

result data and new status it generated (stored). From this, it was only a small step to
include expected results in the test lists and let the logging facility mark any incorrect
results in the print. Automated regression testing in a simulated environment had now
been introduced as a natural thing.

Even late in the 1970s, software programmers were scarce and we usually had to
teach them everything: assembler language, linkers, loaders, bootstrapping, running
the system, and, of course, good practices of basic software engineering (it was not
called that at the time). Using the principle of interpretation and simulated test
environments made introducing rather primitively trained developers on a project
much easier and safer. They were able to find and correct their errors early during unit
tests in the coding phase, and quickly became seasoned developers on-the-job.

Testing in a simulated environment also meant that we were able to implement a
defined process for promoting partially completed systems through several levels of
environments (unit testing, system testing, and production) complete with automatic
regression test data and test procedures.

7 Effects on the Software Architecture

The principle of interpretation of a data-model influenced all aspects of our software
development. The most immediate effect was, of course, on the software architecture;
based as it was on a comprehensive model of the industrial plant, and an easily
adaptable and flexible set of software components.

All data values and their status were fetched, updated, and stored in the model.
Furthermore, all connections and communication between the modeled physical
components of the plant took place through their representations in the model. In
addition, all other types of handling and control were also designed into the model
and represented as ÒabstractÓ components, for example, conversions, averages,
accumulations, calculations, progress timing, storage management, plant sub-systems
(groups), as well as ÒphysicalÓ output devices and set-point controls.

Alarms, reports, logs, and other output data about the operation of the plant were
generated from data in the model and communicated via a number of message buffer
queues to dedicated reporting processes running in parallel to the acquisition and
control process, so that processing and output tasks could perform independently of
each other [5].

Input to and output from the message buffer queues were protected by semaphores,
and buffer overruns were handled so they did not influence the operation of the
acquisition and control process. The principle of interpretation was also used to
describe the layout, contents, and generation of reports.

8 Effects on Project Management

Project planning, scheduling, and management were impacted by the data-model
architecture. Due to the limited complexity of each component, it was easy to estimate
how long it would take to implement it, and actual data from previously developed

components quickly created a solid basis for new estimates. Each component could be
developed and tested almost independently of other components, so it was relatively
easy to assign components to the available developers in the project plan and perform
follow-up on development progress.

However, this did not eliminate the need for the overall design of the components
system, which always involved senior developers. Sometimes it turned out to be a
bottle-neck and generate overruns on its estimates.

We finally managed to deliver our projects almost on time and budget, and with
very few defects in operation.

9 The Applications of the Interpretation Principle

The interpretation principle and data acquisition and control language commands
from Vestkraft Blok2 were reused and improved for another power plant (Nordkraft
Sektion4) and adapted for a sugar production plant (Saxkj¿bing Sukkerfabrik).

However, the comprehensive software engineering framework, described above,
was not realized until the Copenhagen Mail Sorting Center (Fig. 3). In this system, all
physical components of the plant were modeled as components in the data-model.

Fig. 3. The Copenhagen Mail Sorting Center. See Appendix 2 for details of the modeling.

10 Why the Principle Did Not Catch On

Firstly, the advent of new computer and software technology in the late 1970s and
early 1980s meant a complete change in data acquisition and control systems from
comprehensive centralized systems to a network of small dedicated minicomputers,
microprocessors (PLCs), which required less complex software systems.

Secondly, the response time of a system interpreting a data-model is never faster
than the time it takes to scan the data-model. This works for most industrial processes
which only change slowly. However, direct control loops (PID) and other fast
reactions to input must be handled by separate processes executing in parallel. As
prices for computers went down, and hard-wired instrumentation went up, the trend
was to use computers to engage faster and more directly with the control of the
industrial plant.

11 A Final Twist in the Tale

In the late 1980s, I was product manager for a new line of automatic test equipment at
BrŸel & Kj¾r. Our goal was to develop a set of virtual (e.g. software-based)
measuring instruments. In addition to those, we wanted to develop a comprehensive
test and measurement environment, where engineers could develop their own test and
measurement projects, combining the instruments of their choice with calculations,
sequencing, loops, and controls. Numerical results and graphs were to be combined
into reports that showed whether the product being tested has passed or failed.

We had many heated discussions on how to design this test and measurement
environment. There was a clear divide between the experienced test and measurement
engineers and the brilliant software engineers, some just out of the university. For my
part, I was impressed with the advances in computer speed and compiler capabilities;
it seemed that object-oriented development was becoming an important principle for
the future. Therefore, we decided to base the test and measurement environment on
the compilation of our measurement components rather than the interpretation.

We struggled for several years to make this design work, but did not succeed. In
the end, the project was cancelled. A couple of years later, a U.S. company (National
Instruments) launched a, since then, rather successful test and measurement
environment based on the interpretation of simple measurement, calculation and
control components, which could be combined graphically (2D) in an easy drag, drop,
and connect fashion. These simple test and measurement components resemble the
language commands we had used in the early days for the industrial plants, albeit in a
more modern, colorful, and graphic way.

The lack of speed in interpretation, which we had feared so much, was not a
problem for test and measurement engineers, partly due to the increased speed of
computers and partly because many test and measurement processes change at a slow
rate.

In hindsight, this example shows that the interpretation principle can still be the
right way to solve a complex problem, given the right conditions. And, by the way,

Microsoft Excel is actually another example of the successful use of the interpretation
principle.

Acknowledgments. I wish to thank Peter Kraft, who was project manager on the
Vestkraft project, where the initial idea of using the interpretation principle for data
acquisition and control systems was born. Furthermore, I wish to thank Bent Bagger
and Ebbe Sommerlund, who were my primary supports on the Copenhagen Mail
Sorting Center project, where the full impact of the principle was realized. Also, my
gratitude goes to many people for their assistance in recovering our common past
from our combined rusty memories and dusty archives.

References

1. Kraft, P., Vinter, O.: Rapport over proceskontrolsystemets opbygning hos I/S Vestkraft
Esbjerg. Regnecentralen (1970)

2. Nedergaard, N.: Procesregnemaskinen pŒ Vestkraft. Elektroteknikeren, 66. Œrgang nr. 4
(1970) (see also nr. 23 for a description of the whole plant)

3. Prag, P.: Datamatstyring af transport- og sorteringsanl¾g i Centralpostbygningen i
K¿benhavn, RŒdgivning og projektering. In: NordDATA77 Proceedings (1977)

4. Vinter, O.: Datamatstyring af transport- og sorteringsanl¾g i Centralpostbygningen i
K¿benhavn, Transportdatamatstyringen. In: NordDATA77 Proceedings (1977)

5. Kraft, P., Mossin, E.: Datastr¿mme, elementer til kommunikation i et proceskontrolsystem.
In: NordDATA72 Proceedings (1972)

Appendix 1: The Vestkraft Blok2 Power Plant

The power plant was built in 1969 (Fig. 1, Fig. 4). It had an electric capacity of 250
MW, plus a heating capacity of 160 Gcal/h that covered the needs of Esbjerg city. The
turbo-group was from BBC and the boiler unit from Babcock & Wilcox. All of the
plant controls were handled by conventional electronic equipment. For the complete
supervision of the plant, a digital computer system from A/S Regnecentralen was
installed [1, 2].

Fig. 4. A view into Vestkraft Blok2. A combination of two original drawings, matched to fit the
correct proportions of the plant. The boiler section with its heating supply units to the left and
the turbine section to the right.

Every ten seconds, all bearing and coil temperatures from major motors, pumps,
and generators were measured and analyzed by the computer. A special supervision of
boiler drum, oil burners and air pre-heaters was also carried out; approximately 250
analog measurements.

Every minute, another 250 analog values were measured and analyzed; among
others, 170 super-heater pipe temperatures. The latter were particularly important
because close supervision of these could increase maintenance intervals and prevent
breakdowns. All relevant measurements were accumulated over time. Performance
and load calculations were carried out and used to improve the management and
performance of the plant.

The RC4000 computer configuration was: 32kB memory, 512kB drum storage,
512 analog inputs, 216 digital sense inputs, 48 digital interrupt inputs (for counting),
and 48 digital outputs.

Appendix 2: Modeling of the Copenhagen Mail Sorting Center

The software system for the Copenhagen Mail Sorting Center (Fig. 3, [3, 4]) was
developed from 1974Ð1978. The center was designed to handle the 130,000 parcels
and 3 million letters that arrived and departed each day on trucks or trains following a
strict schedule. The main contractor was Boy Transportmateriel A/S.

The center comprised approximately one thousand conveyor belts which, if started
or stopped at the same time (especially when loaded with mail bags or parcels), would
have a severe impact on the power lines supplying the building. Therefore, each
conveyor belt was modeled as a component in the data-model of the software system,
with two flags indicating its ability to receive and deliver mail respectively.

When mail is delivered at the receiving end of a belt, its predecessor component
turns its able-to-deliver true, and the belt component then issues a start command (bit)
to its beltÕs motor. While the motor is running, the component calculates when mail
will reach the other end of the belt, at which point it raises its able-to-deliver flag.
This is detected by the succeeding component, which then starts. If the succeeding
component is not able to receive mail (its able-to-receive flag is false), the belt motor
will be commanded to stop.

This also happens when mail is no longer delivered from the beltÕs predecessor (its
able-to-deliver flag turns false). The component will allow the belt to continue to run
until a calculation determines that the belt is empty. Then the belt motor is
commanded to stop and the componentÕs ability-to-deliver flag is set to false. The
effect propagates down the line of conveyor belt components (Fig. 5).

Fig. 5. Details of conveyor belt connections.

When a belt is intended for storage, the predecessor component is a photo cell
component at the start of the belt, rather than another belt component. The photo cell,
however, is modeled with similar flags, and the storage belt only moves as long as the
photo cell component has its able-to-deliver flag true, for example, while mail is
blocking the view of the photo cell. In this way, mail is compacted on the belt. When
mail reaches the other end of the storage belt (usually controlled by a photo cell
component at the end of the belt now signaling able-to-receive false), the storage belt
will indicate able-to-receive false to its predecessor (the photo cell component at the
start of the belt). This not-able-to-receive flag is reflected to its predecessor (the
component delivering mail to the storage belt). A storage management component
will then choose another parallel storage belt to receive further mail. When emptying
a storage belt, the belt component will act as a normal transporting belt, but it will still
keep the able-to-receive flag false, so that no new mail will be received until the belt
is completely empty.

Thus, the use of these Òable-toÓ flags can control the progress of mail throughout
the mail center, irrespective of the type of equipment modeled, and only keep those
conveyor belts running that are in use. The Òable-toÓ flags are the only way in which

the modeled components communicate, and the flags are examined at each cycle
through the data-model.

The center was controlled by five duplex hot stand-by computer systems for each
section of the mail sorting process, a number of microprocessors, and a supervisory
computer for the operators connected via asynchronous communication lines. The
control computers were Control Data (CDC) Cyber 18-17 with 32Ð88kB memory, a
memory-to-memory high-speed bus, and no backing stores.

