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Abstract. For over a decade, I and a number of other software engineers 
introduced, developed, improved, and expanded the principle of interpretation 
for data acquisition and control task descriptions; initially a simple description 
and execution tool to assist plant engineers, but in the end a software 
development framework for modeling, managing, and executing large, complex 
projects in this domain.  
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1   Introduction 

For the first data acquisition and control system in 1969 for the Danish power plant 
Vestkraft Blok2 (Fig. 1, Appendix 1, [1, 2]), we simply wanted to create a tool 
(simple process language) that would make it easier and more flexible for plant 
engineers to define their measurements and calculations, and thus dispense with the 
limited and predetermined (Òhard codedÓ) operations on process data based on flags 
in data tables. 

In 1978, at the completion of the process control system for the Copenhagen Mail 
Sorting Center, the principle of using interpretation on a data-model of the system 
(Fig. 3, Appendix 2, [3, 4]) had evolved into a software engineering framework that 
not only influenced the system architecture, but all phases of software development 
from detailed requirements, design, coding, testing, and release staging, to project 
management, estimation, planning, scheduling, configuration management, quality 
procedures, and documentation. 



 
 

Fig. 1. The power plants at Vestkraft. Blok2 is the tower on the left. See Appendix 1 for details. 

2   The Early Data Acquisition Systems 

At the beginning of the 1960s, the use of computers started to spread from pure 
mathematical applications to the process control industry. However, both buyers and 
suppliers were very cautious about letting the computer take full control of the 
industrial processes. The acquisition of analog signals and their conversion to binary 
numbers was not very well known, and disturbances from the electrically noisy 
environment of high-power machinery could severely affect the low-level signals at 
maximum values of 24 mA and 10 V. Consequently, the first computer systems were 
only used for logging measurement data; performing simple conversions and 
calculations, and presenting the operators of the plant with alarms and reports. 

These data loggers were programmed like the hard-wired electronic instruments 
they intended to supplement. The early programs were sequential monolithic 
structures that scanned the data acquisition channels and stored them in memory 
resident tables after conversion and simple alarm checks. Other programs would later 
read these tables, perform calculations, and generate reports. Around the mid-1960s, 
the first multiprogramming monitors appeared which allowed programs to execute in 
parallel, for example, data acquisition programs could execute in parallel with report 
printing programs. However, the structure of the programs did not change very much; 
they still retained their basic monolithic form. Now there were just more of them, 
executing in parallel. 



3   The Original Idea of a Dedicated Process Control Language 

In these early systems, in order to describe the processing that would take place on the 
data, a number of flags (bits) were kept for the variables of each measurement, along 
with its status and value. They defined what conversion routine to use, whether alarm 
limits should be checked, or what other calculations should be performed. When a 
data processing program scanned the data tables, it examined the flags individually (in 
a specific sequence) and called the relevant routine (basically a huge case structure).  

Therefore, the plant engineer who designed the actual processing had the difficult 
task of defining the data tables and processing flags; and he had to do it in the 
computerÕs native machine code. Due to the limited number of predefined flags and 
the fixed sequence in which they were scanned, it was often difficult to describe the 
processing that was desired. 

We wanted to improve this situation by developing a data acquisition and control 
language closer to the concepts of a plant engineer, to gain flexibility by replacing the 
flags and fixed processing sequence and allowing the engineer to select the processing 
from a range of language commands. The introduction of such a process language 
was not new. Other dedicated data acquisition and control languages were being 
developed for similar systems at that time. However, the trend was to compile such 
languages into (monolithic) executable programs. 

4   The Introduction of the Interpretation Principle 

We could not allow ourselves the luxury of compiler for the language, because our 
development system was the same as the executing system, and therefore had severe 
limitations regarding memory, backing store, and peripherals. Furthermore, at that 
time, compiled code was known to lack the necessary performance for real-time 
applications. We therefore decided to define the language in a macro-like format 
which could be easily translated into command data-structures.  

The command data-structures were made self-contained, for example, the 
references to the software routines to execute the macro-command and the parameters 
were stored together. Since each routine was designed for the specific purpose of 
handling its parameters, the length of each command data-structure could also be 
calculated and stored in the structure.  

As we did not have a file handling system either, we had to organize the layout of 
command data-structures and data variables on the backing store ourselves. At 
specific places, the translator would insert special commands to load the next segment 
of command data-structures from backing store to memory, and commands to swap 
segments of variables that had been updated with others which would be needed next.  

At predefined intervals, a simple program (interpreter) executing in one of the 
multiprogramming processes scanned the model containing the command data-
structures. It would sub-routine jump to the routine referenced in the first command 
data-structure. When that routine returned, the interpreter added the stored length of 
the command data-structure (parameters) to point to the beginning of the next 
command data-structure, call that routine, and so on, until an end-of-data-structure 



command was encountered. In this way, data processing was no longer contained in a 
monolithic program; it had turned into an extremely flexible set of small dedicated 
routines in a data-model that was interpreted rather than executed.   

Several routines (macro-language commands) would normally have to be called to 
accomplish one complete processing of a plant variable (Fig. 2), but the type of 
checks, conversions, calculations, and the order in which they were performed, was 
no longer limited or predefined by the real-time processing program.  
 

 
Fig. 2. Processing commands for a temperature variable at Vestkraft Blok2. 

5   New Opportunities Because of the Interpretation Principle 

Having one central data-model, which is interpreted rather than executed, opened up 
for a number of advantages in the development and customization of data acquisition 
and control systems. New language commands could be easily defined; a small 
dedicated component (routine and parameter description) designed, coded and added 
to the macro-translator. Nothing had to be changed in the on-line systemÕs processes 
(programs); the data-model was simply replaced.  

In addition, defects were easier to locate because they were confined to the new 
component (or the macro-translator), as there was no direct communication (e.g. 
calls) between routines, only through the data values and their status.  

6   Testing in a Simulated Environment 

The principle of interpretation allowed us to test new components in a simulated 
environment (e.g. off-line) using only those parts of the data-model that were needed 
for testing the component. Dedicated test drivers and stubs (simple test commands 
included in the macro-language) were inserted in the test data-model to check whether 
the new routine produced the correct (expected) results under different conditions of 
input data.  For each call, the drivers and stubs stepped through a list of test inputs 
(test cases).  

A logging facility was inserted (another test component in the data-model) that 
could print the data values and status used by the component (routine), along with the 



result data and new status it generated (stored). From this, it was only a small step to 
include expected results in the test lists and let the logging facility mark any incorrect 
results in the print. Automated regression testing in a simulated environment had now 
been introduced as a natural thing.  

Even late in the 1970s, software programmers were scarce and we usually had to 
teach them everything: assembler language, linkers, loaders, bootstrapping, running 
the system, and, of course, good practices of basic software engineering (it was not 
called that at the time). Using the principle of interpretation and simulated test 
environments made introducing rather primitively trained developers on a project 
much easier and safer. They were able to find and correct their errors early during unit 
tests in the coding phase, and quickly became seasoned developers on-the-job.   

Testing in a simulated environment also meant that we were able to implement a 
defined process for promoting partially completed systems through several levels of 
environments (unit testing, system testing, and production) complete with automatic 
regression test data and test procedures. 

7   Effects on the Software Architecture 

The principle of interpretation of a data-model influenced all aspects of our software 
development. The most immediate effect was, of course, on the software architecture; 
based as it was on a comprehensive model of the industrial plant, and an easily 
adaptable and flexible set of software components.  

All data values and their status were fetched, updated, and stored in the model. 
Furthermore, all connections and communication between the modeled physical 
components of the plant took place through their representations in the model. In 
addition, all other types of handling and control were also designed into the model 
and represented as ÒabstractÓ components, for example, conversions, averages, 
accumulations, calculations, progress timing, storage management, plant sub-systems 
(groups), as well as ÒphysicalÓ output devices and set-point controls.  

Alarms, reports, logs, and other output data about the operation of the plant were 
generated from data in the model and communicated via a number of message buffer 
queues to dedicated reporting processes running in parallel to the acquisition and 
control process, so that processing and output tasks could perform independently of 
each other [5].  

Input to and output from the message buffer queues were protected by semaphores, 
and buffer overruns were handled so they did not influence the operation of the 
acquisition and control process. The principle of interpretation was also used to 
describe the layout, contents, and generation of reports. 

8   Effects on Project Management 

Project planning, scheduling, and management were impacted by the data-model 
architecture. Due to the limited complexity of each component, it was easy to estimate 
how long it would take to implement it, and actual data from previously developed 



components quickly created a solid basis for new estimates. Each component could be 
developed and tested almost independently of other components, so it was relatively 
easy to assign components to the available developers in the project plan and perform 
follow-up on development progress.  

However, this did not eliminate the need for the overall design of the components 
system, which always involved senior developers. Sometimes it turned out to be a 
bottle-neck and generate overruns on its estimates.  

We finally managed to deliver our projects almost on time and budget, and with 
very few defects in operation.  

9   The Applications of the Interpretation Principle 

The interpretation principle and data acquisition and control language commands 
from Vestkraft Blok2 were reused and improved for another power plant (Nordkraft 
Sektion4) and adapted for a sugar production plant (Saxkj¿bing Sukkerfabrik).  

However, the comprehensive software engineering framework, described above, 
was not realized until the Copenhagen Mail Sorting Center (Fig. 3). In this system, all 
physical components of the plant were modeled as components in the data-model.  

 
 

 

Fig. 3. The Copenhagen Mail Sorting Center. See Appendix 2 for details of the modeling. 



10   Why the Principle Did Not Catch On 

Firstly, the advent of new computer and software technology in the late 1970s and 
early 1980s meant a complete change in data acquisition and control systems from 
comprehensive centralized systems to a network of small dedicated minicomputers, 
microprocessors (PLCs), which required less complex software systems.  

Secondly, the response time of a system interpreting a data-model is never faster 
than the time it takes to scan the data-model. This works for most industrial processes 
which only change slowly. However, direct control loops (PID) and other fast 
reactions to input must be handled by separate processes executing in parallel. As 
prices for computers went down, and hard-wired instrumentation went up, the trend 
was to use computers to engage faster and more directly with the control of the 
industrial plant. 

11   A Final Twist in the Tale 

In the late 1980s, I was product manager for a new line of automatic test equipment at 
BrŸel & Kj¾r. Our goal was to develop a set of virtual (e.g. software-based) 
measuring instruments. In addition to those, we wanted to develop a comprehensive 
test and measurement environment, where engineers could develop their own test and 
measurement projects, combining the instruments of their choice with calculations, 
sequencing, loops, and controls. Numerical results and graphs were to be combined 
into reports that showed whether the product being tested has passed or failed. 

We had many heated discussions on how to design this test and measurement 
environment. There was a clear divide between the experienced test and measurement 
engineers and the brilliant software engineers, some just out of the university. For my 
part, I was impressed with the advances in computer speed and compiler capabilities; 
it seemed that object-oriented development was becoming an important principle for 
the future. Therefore, we decided to base the test and measurement environment on 
the compilation of our measurement components rather than the interpretation. 

We struggled for several years to make this design work, but did not succeed. In 
the end, the project was cancelled. A couple of years later, a U.S. company (National 
Instruments) launched a, since then, rather successful test and measurement 
environment based on the interpretation of simple measurement, calculation and 
control components, which could be combined graphically (2D) in an easy drag, drop, 
and connect fashion. These simple test and measurement components resemble the 
language commands we had used in the early days for the industrial plants, albeit in a 
more modern, colorful, and graphic way.  

The lack of speed in interpretation, which we had feared so much, was not a 
problem for test and measurement engineers, partly due to the increased speed of 
computers and partly because many test and measurement processes change at a slow 
rate.  

In hindsight, this example shows that the interpretation principle can still be the 
right way to solve a complex problem, given the right conditions. And, by the way, 



Microsoft Excel is actually another example of the successful use of the interpretation 
principle. 
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Appendix 1: The Vestkraft Blok2 Power Plant  

The power plant was built in 1969 (Fig. 1, Fig. 4). It had an electric capacity of 250 
MW, plus a heating capacity of 160 Gcal/h that covered the needs of Esbjerg city. The 
turbo-group was from BBC and the boiler unit from Babcock & Wilcox. All of the 
plant controls were handled by conventional electronic equipment. For the complete 
supervision of the plant, a digital computer system from A/S Regnecentralen was 
installed [1, 2]. 



 
Fig. 4. A view into Vestkraft Blok2. A combination of two original drawings, matched to fit the 
correct proportions of the plant. The boiler section with its heating supply units to the left and 
the turbine section to the right. 

Every ten seconds, all bearing and coil temperatures from major motors, pumps, 
and generators were measured and analyzed by the computer. A special supervision of 
boiler drum, oil burners and air pre-heaters was also carried out; approximately 250 
analog measurements.  

Every minute, another 250 analog values were measured and analyzed; among 
others, 170 super-heater pipe temperatures. The latter were particularly important 
because close supervision of these could increase maintenance intervals and prevent 
breakdowns. All relevant measurements were accumulated over time. Performance 
and load calculations were carried out and used to improve the management and 
performance of the plant. 

The RC4000 computer configuration was: 32kB memory, 512kB drum storage, 
512 analog inputs, 216 digital sense inputs, 48 digital interrupt inputs (for counting), 
and 48 digital outputs. 

Appendix 2: Modeling of the Copenhagen Mail Sorting Center  

The software system for the Copenhagen Mail Sorting Center (Fig. 3, [3, 4]) was 
developed from 1974Ð1978. The center was designed to handle the 130,000 parcels 
and 3 million letters that arrived and departed each day on trucks or trains following a 
strict schedule. The main contractor was Boy Transportmateriel A/S. 



The center comprised approximately one thousand conveyor belts which, if started 
or stopped at the same time (especially when loaded with mail bags or parcels), would 
have a severe impact on the power lines supplying the building. Therefore, each 
conveyor belt was modeled as a component in the data-model of the software system, 
with two flags indicating its ability to receive and deliver mail respectively.  

When mail is delivered at the receiving end of a belt, its predecessor component 
turns its able-to-deliver true, and the belt component then issues a start command (bit) 
to its beltÕs motor. While the motor is running, the component calculates when mail 
will reach the other end of the belt, at which point it raises its able-to-deliver flag. 
This is detected by the succeeding component, which then starts. If  the succeeding 
component is not able to receive mail (its able-to-receive flag is false), the belt motor 
will be commanded to stop.  

This also happens when mail is no longer delivered from the beltÕs predecessor (its 
able-to-deliver flag turns false). The component will allow the belt to continue to run 
until a calculation determines that the belt is empty. Then the belt motor is 
commanded to stop and the componentÕs ability-to-deliver flag is set to false. The 
effect propagates down the line of conveyor belt components (Fig. 5). 

 

 
 

Fig. 5. Details of conveyor belt connections. 

When a belt is intended for storage, the predecessor component is a photo cell 
component at the start of the belt, rather than another belt component. The photo cell, 
however, is modeled with similar flags, and the storage belt only moves as long as the 
photo cell component has its able-to-deliver flag true, for example, while mail is 
blocking the view of the photo cell. In this way, mail is compacted on the belt. When 
mail reaches the other end of the storage belt (usually controlled by a photo cell 
component at the end of the belt now signaling able-to-receive false), the storage belt 
will indicate able-to-receive false to its predecessor (the photo cell component at the 
start of the belt). This not-able-to-receive flag is reflected to its predecessor (the 
component delivering mail to the storage belt). A storage management component 
will then choose another parallel storage belt to receive further mail. When emptying 
a storage belt, the belt component will act as a normal transporting belt, but it will still 
keep the able-to-receive flag false, so that no new mail will be received until the belt 
is completely empty. 

Thus, the use of these Òable-toÓ flags can control the progress of mail throughout 
the mail center, irrespective of the type of equipment modeled, and only keep those 
conveyor belts running that are in use. The Òable-toÓ flags are the only way in which 



the modeled components communicate, and the flags are examined at each cycle 
through the data-model. 

The center was controlled by five duplex hot stand-by computer systems for each 
section of the mail sorting process, a number of microprocessors, and a supervisory 
computer for the operators connected via asynchronous communication lines. The 
control computers were Control Data (CDC) Cyber 18-17 with 32Ð88kB memory, a 
memory-to-memory high-speed bus, and no backing stores. 
 


