Fault Diagnosis of Roller Bearing Based on PCA and Multi-class Support Vector Machine

Abstract : This paper discusses the fault features selection using principal component analysis and using multi-class support vector machine (MSVM) for bearing faults classification. The bearings vibration signal is obtained from experiment in accordance with the following conditions: normal bearing, bearing with inner race fault, bearing with outer race fault and bearings with balls fault. Statistical parameters of vibration signal such as mean, standard deviation, sample variance, kurtosis, skewness, etc, are processed with principal component analysis (PCA) for extracting the optimal features and reducing the dimension of original features. The multi-class classification algorithm of support vector machine (SVM), one against one strategy, is used for bearing multi-class fault diagnosis. The performance of the method proposed was high accurate and efficient.
Type de document :
Communication dans un congrès
Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-347 (Part IV), pp.198-205, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18369-0_22〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01564862
Contributeur : Hal Ifip <>
Soumis le : mercredi 19 juillet 2017 - 11:23:50
Dernière modification le : mercredi 19 juillet 2017 - 11:29:20

Fichier

978-3-642-18369-0_22_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Guifeng Jia, Shengfa Yuan, Chengwen Tang. Fault Diagnosis of Roller Bearing Based on PCA and Multi-class Support Vector Machine. Daoliang Li; Yande Liu; Yingyi Chen. 4th Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. Springer, IFIP Advances in Information and Communication Technology, AICT-347 (Part IV), pp.198-205, 2011, Computer and Computing Technologies in Agriculture IV. 〈10.1007/978-3-642-18369-0_22〉. 〈hal-01564862〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

68