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Abstract
Minimal perfect hash functions provide space-efficient and collision-free hashing on static sets.
Existing algorithms and implementations that build such functions have practical limitations on
the number of input elements they can process, due to high construction time, RAM or external
memory usage. We revisit a simple algorithm and show that it is highly competitive with the
state of the art, especially in terms of construction time and memory usage. We provide a
parallel C++ implementation called BBhash. It is capable of creating a minimal perfect hash
function of 1010 elements in less than 7 minutes using 8 threads and 5 GB of memory, and the
resulting function uses 3.7 bits/element. To the best of our knowledge, this is also the first
implementation that has been successfully tested on an input of cardinality 1012. Source code:
https://github.com/rizkg/BBHash

1998 ACM Subject Classification H.3.1 E.2

Keywords and phrases Minimal Perfect Hash Functions, Algorithms, Data Structures, Big Data

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.11

1 Introduction

Given a set S of N elements (keys), a minimal perfect hash function (MPHF) is an injective
function that maps each key of S to an integer in the interval [1, N ]. In other words, an
MPHF labels each key of S with integers in a collision-free manner, using the smallest possible
integer range. A remarkable property is the small space in which these functions can be
stored: only a couple of bits per key, independently of the size of the keys. Furthermore,
an MPHF query is done in constant time. While an MPHF could be easily obtained using a
key-value store (e.g. a hash table), such a representation would occupy an unreasonable
amount of space, with both the keys and the integer labels stored explicitly.

The theoretical minimum amount of space needed to represent an MPHF is known to
be log2(e)N ≈ 1.44N bits [10, 14]. In practice, for large key sets (billions of keys), many
implementations achieve less than 3N bits per key, regardless of the number of keys [2, 9].
However no implementation comes asymptotically close to the lower bound for large key sets.
Given that MPHFs are typically used to index huge sets of strings, e.g. in bioinformatics [6, 7, 8],
in network applications [12], or in databases [5], lowering the representation space is of interest.
We observe that in many of these applications, MPHFs are actually used to construct static
dictionaries, i.e. key-value stores where the set of keys is fixed and never updated [6, 8].
Assuming that the user only queries the MPHF to get values corresponding to keys that are
guaranteed to be in the static set, the keys themselves do not necessarily need to be stored in
memory. However the associated values in the dictionary typically do need to be stored, and
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11:2 Fast and scalable minimal perfect hashing for massive key sets

they often dwarf the size of the MPHF. The representation of such dictionaries then consists of
two components: a space-efficient MPHF, and a relatively more space-expensive set of values.
In such applications, whether the MPHF occupies 1.44 bits or 3 bits per key is thus arguably
not a critical aspect.

In practice, a significant bottleneck for large-scale applications is the construction step of
MPHFs, both in terms of memory usage and computation time. Constructing MPHFs efficiently
is an active area of research. Many recent MPHF construction algorithms are based on efficient
peeling of hypergraphs [1, 3, 4, 11]. However, they require an order of magnitude more
space during construction than for the resulting data structure. For billions of keys, while
the MPHF itself can easily fit in main memory of a commodity computer, its construction
algorithm requires large-memory servers. To address this, Botelho and colleagues [4] propose
to divide the problem by building many smaller MPHFs, while Belazzougui et al. [1] propose
an external-memory algorithm for hypergraph peeling. Very recently, Genuzio et al. [11]
demonstrated practical improvements to the Gaussian elimination technique, that make
it competitive with [1] in terms of construction time, lookup time and space of the final
structure. These techniques are, to the best of our knowledge, the most scalable solutions
available. However, when evaluating existing implementations, the construction of MPHFs for
sets that significantly exceed a billion keys remains prohibitive in terms of time and space
usage.

A simple idea has been explored by previous works [6, 12, 16] for constructing PHFs
(Perfect Hash Functions, non minimal) or MPHFs using arrays of bits, or fingerprints. However,
it has received relatively less attention compared to other hypergraph-based methods, and
no implementation is publicly available in a stand-alone MPHF library. In this article we
revisit this idea, and introduce novel contributions: a careful analysis of space usage during
construction, and an efficient, parallel implementation along with an extensive evaluation
with respect to the state of the art. We show that it is possible to construct an MPHF using
almost as little memory as the space required by the final structure, without partitioning the
input. We propose a novel implementation called BBhash (“Basic Binary representAtion of
Successive Hashing”) with the following features:

construction space overhead is small compared to the space occupied by the MPHF,
multi-threaded,
scales up to to very large key sets (tested with up to 1 trillion keys).
To the best of our knowledge, there does not exist another usable implementation that

satisfies any two of the features above. Furthermore, the algorithm enables a time/memory
trade-off: faster construction and faster query times can be obtained at the expense of a
few more bits per element in the final structure and during construction. We created an
MPHF for ten billion keys in 6 minutes 47 seconds and less than 5 GB of working memory,
and an MPHF for a trillion keys in less than 36 hours and 637 GB memory. Overall, with
respect to other available MPHF construction approaches, our implementation is at least two
orders of magnitudes more space-efficient when considering internal and external memory
usage during construction, and at least one order of magnitude faster. The resulting MPHF
has slightly higher space usage and faster or comparable query times than other methods.

2 Efficient construction of minimal perfect hash function

2.1 Method overview
Our MPHF construction procedure revisits previously published techniques [6, 12]. Given a set
F0 of keys, a classical hash function h0 maps keys to an integer in [1, |F0|]. A bit array A0 of
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Figure 1 MPHF construction and query example. The input is a set F0 composed of N = 6 keys
(k1 to k6). All keys are hashed using a hash function h0 and are attempted to be placed in an array
A0 at positions given by the hash function. The keys k3 and k6 do not have collisions in the array,
thus the corresponding bits in A0 are set to ’1’. The other keys from F0 that are involved in collisions
are placed in a new set F1. In the second level, keys from F1 are hashed using a hash function h1.
Keys k1 and k5 are uniquely placed while k2 and k4 collide, thus they are then stored in the set
F2. With the hash function h2, the keys from F2 have no collision, and the process finishes. The
MPHF query operation is very similar to the construction algorithm. Let A be the the concatenation
of A0, A1, A2 (see bottom part of the figure). To query k2, the key is first hashed with h0. The
associated value in A0 is ’0’, so k2 is then hashed with h1. The value associated in A1 is again ’0’.
When finally hashed with h2, the value associated in A2 is ’1’ and thus the query stops here. The
index returned by the MPHF is the rank of this ’1’ (here, 5) in A. In this example, the MPHF values
returned when querying k1, k2, k3, k4, k5 and k6 are respectively 4,5,2,6,3, and 1.

size |F0| is created such that there is a 1 at position i if and only if exactly one element of
F0 has a hash value of i. We say that there is a collision whenever two keys in F0 have the
same hash value. Keys from F0 that were involved in a collision are inserted into a new set
F1. The process repeats with F1 and a new hash function h1. A new bit array A1 of size
|F1| is created using the same procedure as for A0 (except that F1 is used instead of F0, and
h1 instead of h0). The process is repeated with F2, F3, . . . until one of these sets, Flast+1, is
empty.

We obtain an MPHF by concatenating the bit arrays A0, A1, . . . , Alast into an array A.
To perform a query, a key is hashed successively with hash functions h0, h1, . . . as long as
the value in Ai (i ≥ 0) at the position given by the hash function hi is 0. Eventually, by
construction, we reach a 1 at some position of A for some i = d. We say that the level of the
key is d. The index returned by the MPHF is the rank of this one in A. See Figure 1 for an
example.

2.2 Algorithm details

2.2.1 Collision detection
During construction at each level d, collisions are detected using a temporary bit array Cd of
size |Ad|. Initially all Cd bits are set to ’0’. A bit of Cd[i] is set to ’1’ if two or more keys from
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11:4 Fast and scalable minimal perfect hashing for massive key sets

Fd have the same value i given by hash function hd. Finally, if Cd[i] = 1, then Ad[i] = 0.
Formally:

Cd[i] = 1⇒ Ad[i] = 0;
(hd[x] = i and Ad[i] = 0 and Cd[i] = 0)⇒ Ad[i] = 1 (and Cd[i] = 0) ;
(hd[x] = i and Ad[i] = 1 and Cd[i] = 0)⇒ Ad[i] = 0 and Cd[i] = 1.

2.2.2 Queries
A query of a key x is performed by finding the smallest d such that Ad[hd(x)] = 1. The (non
minimal) hash value of x is then (

∑
i<d |Fi|) + hd(x).

2.2.3 Minimality
To ensure that the image range of the function is [1, |F0|], we compute the cumulative rank
of each ’1’ in the bit arrays Ai. Suppose, that d is the smallest value such that Ad[hd(x)] = 1.
The minimal perfect hash value is given by

∑
i<d(weight(Ai) + rank(Ad[hd(x)]), where

weight(Ai) is the number of bits set to ’1’ in the Ai array, and rank(Ad[y]) is the number of
bits set to 1 in Ad within the interval [0, y], thus rank(Ad[y]) =

∑
j<y Ad[j]. This is a classic

method also used in other MPHFs [3].

2.2.4 Faster query and construction times (parameter γ)
The running time of the construction depends on the number of collisions on the Ad arrays,
at each level d. One way to reduce the number of collisions, hence to place more keys at each
level, is to use bit arrays (Ad and Cd) larger than |Fd|. We introduce a parameter γ ∈ R,
γ ≥ 1, such that |Cd| = |Ad| = γ|Fd|. With γ = 1, the size of A is minimal. With γ ≥ 2,
the number of collisions is significantly decreased and thus construction and query times are
reduced, at the cost of a larger MPHF structure size. The influence of γ is discussed in more
detail in the following analyses and results.

2.3 Analysis
Proofs of the following observations and lemma are given in the Appendix.

2.3.1 Size of the MPHF

The expected size of the structure can be determined using a simple argument, previously
made in [6]. When γ = 1, the expected number of keys which do not collide at level d is
|Ad|e−1, thus |Ad| = |Ad−1|(1 − e−1) = |A0|(1 − e−1)d. In total, the expected number of
bits required by the hashing scheme is

∑
d≥0 |Ad| = N

∑
d≥0(1− e−1)d = eN , with N being

the total number of input keys (N = |F0|). Note that consequently the image of the hash
function is also in [1, eN ], before minimization using the rank technique. When γ ≥ 1, the
expected proportion of keys without collisions at each level d is |Ad|e−

1
γ . Since each Ad no

longer uses one bit per key but γ bits per key, the expected total number of bits required by
the MPHF is γe

1
γ N .

2.3.2 Space usage during construction
We analyze the disk space used during construction. Recall that during construction of level
d, a bit array Cd of size |Ad| is used to record collisions. Note that the Cd array is only
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needed during the d-th level. It is deleted before level d + 1. The total memory required
during level d is

∑
i≤d(|Ai|) + |Cd| =

∑
i<d(|Ai|) + 2|Ad|.

I Lemma 1. For γ > 0, the space of our MPHF is S = γe
1
γ N bits. The maximal space during

construction is S when γ ≤ log(2)−1, and 2S bits otherwise.

A full proof of the Lemma is provided in the Appendix.

3 Implementation

We present BBhash, a C++ implementation available at http://github.com/rizkg/BBHash.
We describe in this section some design key choices and optimizations.

3.1 Rank structure
We use a classical technique to implement the rank operation: the ranks of a fraction of the
’1’s present in A are recorded, and the ranks in-between are computed dynamically using the
recorded ranks as checkpoints.

In practice 64 bit integers are used for counters, which is enough for realistic use of an
MPHF, and placed every 512 positions by default. These values were chosen as they offer
a good speed/memory trade-off, increasing the size of the MPHF by a factor 1.125 while
achieving good query performance. The total size of the MPHF is thus (1 + 64

512 )γe
1
γ N .

3.2 Parallelization
Parallelization is achieved by partitioning keys over several threads. The algorithm presented
in Section 2 is executed on multiple threads concurrently, over the same memory space.
Built-in compiler functions (e.g. sync_fetch_and_or) are used for concurrent access in the
Ai arrays. The efficiency of this parallelization scheme is shown in the Results section, but
note that it is fundamentally limited by random memory accesses to the Ai arrays which
incur cache misses.

3.3 Hash functions
The MPHF construction requires classical hash functions. Other authors have observed that
common hash functions behave practically as well as fully random hash functions [2]. We
therefore choose to use xor-shift based hash functions [13] for their efficiency both in terms
of computation speed and distribution uniformity [15].

3.4 Disk usage
In the applications we consider, key sets are typically too big to fit in RAM. Thus we propose
to read them on the fly from disk. There are mainly two distinct strategies regarding the
disk usage during construction: 1/ during each level d, keys that are to be inserted in the set
Fd+1 are written directly to disk. The set Fd+1 is then read during level d+ 1 and erased
before level d+ 2; or 2/ at each level all keys from the original input key file are read and
queried in order to determine which keys were already assigned to a level i < d, and which
would belong to Fd. When the key set becomes small enough (below user-defined threshold)
it is loaded in ram to avoid costly re-computation from scratch at each level.

The first strategy obviously provides faster construction at the cost of temporary disk usage.
At each level d > 0, two temporary key files are stored on disk: Fd and Fd+1. The highest disk
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11:6 Fast and scalable minimal perfect hashing for massive key sets

usage is thus achieved during level 1, i.e. by storing |F1|+|F2| = |F0|((1−e−1/γ)+(1−e−1/γ)2)
elements. With γ = 1, this represents ≈ 1.03N elements, thus the construction overhead on
disk is approximately the size of the input key file. Note that with γ = 2 (resp. γ = 5), this
overhead diminishes and becomes a ratio of ≈ 0.55 (resp. ≈ 0.21) the size of the input key
file.

The first strategy is the default strategy proposed in our implementation. The second
one has also been implemented and can be optionally switched on.

3.5 Termination

The expected number of unplaced keys decreases exponentially with the number of levels
but is not theoretically guaranteed to reach zero in a finite number of steps. To ensure
termination of the construction algorithm, in our implementation a maximal number D of
levels is fixed. Then, the remaining keys are inserted into a regular hash table. Value D is a
parameter, its default value is D = 25 for which the expected number of keys stored in this
hash table is ≈ 10−5N for γ = 1 and becomes in practice negligible for γ ≥ 2, allowing the
size overhead of the final hash table to be negligible regarding the final MPHF size.

4 Results

We evaluated the performance BBhash for the construction of large MPHFs. We generated
files containing various numbers of keys (from 1 million to 1 trillion keys). In our tests, a
key is a binary representation of a pseudo-random positive integer in [0; 264]. Within each
file, each key is unique. We also performed a test where input keys are strings (n-grams) to
ensure that using integers as keys does not bias results. Tests were performed on a cluster
node with a Intel© Xeon© CPU E5-2660 v3 2.60GH 20-core CPU, 256 GB of memory, and
a mechanical hard drive. Except for the experiment with 1012 keys, running times include
the time needed to read input keys from disk. Note that files containing key sets may be
cached in memory by the operating system, and all evaluated methods benefit from this
effect during MPHF construction. We refer to the Appendix for the specific commands and
parameters used in these experiments.

We first analyzed the influence of the γ value (the main parameter of BBhash), then
the effect of using multiple threads depending on the parallelization strategy. Second, we
compared BBhash with other state-of-the-art methods. Finally, we performed an MPHF
construction on 1012 elements.

4.1 Influence of the γ parameter

We report in Figure 2 (left) the construction times and the mean query times, as well as
the size of the produced MPHF, with respect to several γ values. The main observation is
that γ ≥ 2 drastically accelerates construction and query times. This is expected since large
γ values allow more elements to be placed in the first levels of the MPHF; thus limiting the
number of times each key is hashed to compute its level. In particular, for keys placed
in the very first level, the query time is limited to a single hashing and a memory access.
The average level of all keys is e(1/γ), we therefore expect construction and query times
to decrease when γ increases. However, larger γ values also incur larger MPHF sizes. One
observes that γ > 5 values seem to bring very little advantage at the price of higher space
requirements. A related work used γ = 1 in order to minimize the MPHF size [6]. Here, we
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Figure 2 Left: Effects of the gamma parameter on the performance of BBhash when run on a set
composed of one billion keys, when executed on a single CPU thread. Times and MPHF size behave
accordingly to the theoretical analysis, respectively O(e(1/γ)), and O(γe(1/γ)). Right: Performance
of the BBhash construction time according to the number of cores, using γ = 2.

argue that using γ values larger than 1 has significant practical merits. In our tests, we often
used γ = 2 as it yields an attractive time/space trade-off during construction and queries.

4.2 Parallelization performance
We evaluated the capability of our implementation to make use of multiple CPU cores. In
Figure 2 (right), we report the construction times with respect to the number of threads.
We observe a near-ideal speed-up with respect to the number of threads with diminishing
returns when using more than 10 threads, which is likely due to cache misses that induce a
memory access bottleneck.

In addition to these results, we applied BBhash on a key set of 10 billion keys and on
a key set of 100 billion keys, again using default parameters and 8 threads. The memory
usage was respectively 4.96GB and 49.49GB, and the construction time was respectively 462
seconds and 8913 seconds, showing the scalability of BBhash.

4.3 Comparisons with state of the art methods
We compared BBhash with state-of-the-art MPHF methods. CHD (http://cmph.sourceforge.
net/) is an implementations of the compressed hash-and-displace algorithm [2]. EMPHF [1]
is based on random hypergraph peeling, and the HEM [4] implementation in EMPHF is
based on partitioning the input data. Sux4J is a Java implementation of [11]. We did not
include other methods cited earlier because they do not provide an implementation [12, 16]
or the software integrates a non-minimal perfect hash function that is not stand-alone [6].
However single-threaded results presented in [16] show that construction times and MPHF
sizes are comparable to ours, query times are significantly longer, and no indication is
provided about the memory usage during construction. Our benchmark code is available at
https://github.com/rchikhi/benchmphf.

Figure 3 shows that all evaluated methods are able to construct MPHFs that contain a
billion elements, but only BBhash scales up to datasets that contain 1011 elements and more.
Overall, BBhash shows consistently better time and memory usage during construction.

We additionally compared the resulting MPHF size, i.e. the space of the data structure
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Figure 3 Memory footprint and construction time with respect to the number of keys. All
libraries were run using default parameters, including γ = 2 for BBhash. For a fair comparison,
BBhash was executed on a single CPU thread. Except for Sux4J, missing data points correspond to
runs that exceeded the amount of available RAM. Sux4J limit comes from the disk usage, estimated
at approximately 4TB for 1011 keys.

returned by the construction algorithm, and the mean query time across all libraries on a
dataset consisting of a billion keys (Table 1). MPHFs produced by BBhash range from 2.89
bits/key (when γ = 1 and ranks are sampled every 1024 positions) to 6.9 bits/key (when γ = 5
and a rank sampling of 512). The 0-0.8 bits/key size difference between our implementation
and the theoretical space usage of the BBhash structure size is due to additional space
used by the rank structure. We believe that a reasonable compromise in terms of query
time and structure size is 3.7 bits/key with γ = 2 and a rank sampling of 512, which is
marginally larger than the MPHF sizes of other libraries (ranging from 2.6 to 3.5 bits/key). As
we argued in the Introduction, using one more bit per key seems to be a reasonable trade-off
for performance.

Construction times vary by one or two orders of magnitude across methods, BBhash
being the fastest. With default parameters (γ = 2, rank sampling of 512), BBhash has a
construction memory footprint 40× to 60× smaller than other libraries except for Sux4j, for
which BBhash remains 4× smaller. Query times are roughly within an order of magnitude
(179 − 1037 ns) of each other across methods, with a slight advantage for BBhash when
γ ≥ 2. Sux4j achieves an attractive balance with low construction memory and query times,
but high disk usage. In our tests, the high disk usage of Sux4j was a limiting factor for the
construction of very large MPHFs.
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Method Query
time (ns)

MPHF size
(bits/key)

Const.
time∗

(s)

Const.
memory∗∗

Disk.
usage
(GB)

BBhash γ = 1 271 3.1 60 (393) 3.2 (376) 8.23
BBhash γ = 1 minirank 279 2.9 61(401) 3.2 (376) 8.23
BBhash γ = 2 216 3.7 35 (229) 4.3 (516) 4.45
BBhash γ = 2 nodisk 216 3.7 80 (549) 6.2 (743) 0
BBhash γ = 5 179 6.9 25 (162) 10.7 (1,276) 1.52
EMPHF 246 2.9 2,642 247.1 (29,461)† 20.8
EMPHF HEM 581 3.5 489 258.4 (30,798)† 22.5
CHD 1037 2.6 1,146 176.0 (20,982) 0
Sux4J 252 3.3 1,418 18.10 (2,158) 40.1
Table 1 Performance of different MPHF algorithms applied on a key set composed of 109 64-bits

random integers, of size 8GB. Each time result is the average value over three tests. The ’nodisk’ row
implements the second strategy described in Section 3.4, and the ’minirank’ row samples ranks every
1024 positions instead of 512 by default. ∗The column “Const. time” indicates the construction
time in seconds. In the case of BBhash, the first value is the construction time using eight CPU
threads and the second value in parenthesis is the one using one CPU thread. ∗∗The column “Const.
memory” indicates the RAM used during the MPHF construction, in bits/key and the total in MB in
parenthesis. † The memory usages of EMPHF and EMPHF HEM reflect the use of memory-mapped
files (mmap scheme).

Note that EMPHF, EMPHF HEM and Sux4j implement a disk partitioning strategy, that
could in principle also be applied to others methods, including ours. Instead of creating a
single large MPHF, they partition the set of input keys on disk and construct many small MPHFs
independently. In theory this technique allows to engineer the MPHF construction algorithm to
use parallelism and lower memory, at the expense of higher disk usage. In practice we observe
that the existing implementations that use this technique are not parallelized. While EMPHF
and EMPHF HEM used relatively high memory in our tests (around 30 GB for 1 billion
elements) due to memory-mapped files, they also completed the construction successfully on
another machine that had 16 GB of available memory. However, we observed what appears to
be limitations in the scalability of the scheme: we were unable to run EMPHF and EMPHF
HEM on an input of 10 billion elements using 256 GB of memory. Regardless, we view this
partitioning technique as promising but orthogonal to the design of efficient "monolithic"
MPHFs constructions such as BBhash.

4.4 Performance on an actual dataset

In order to ensure that using pseudo-random integers as keys does not bias results, we ran
BBhash using strings as keys. We used n-grams extracted from the Google Books Ngram
dataset1, version 20120701. On average the n-gram size is 18. We also generated random
words of size 18. As reported in Table 2, we obtained highly similar results to those obtained
with random integer keys.

1 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

SEA 2017



11:10 Fast and scalable minimal perfect hashing for massive key sets

Dataset Query time (ns) MPHF size
(bits/key)

Const. time
(s)

108 Random strings 325 3.7 35
108 Ngrams 296 3.7 37

Table 2 Performance of BBhash (γ = 2, 8 threads) when using ASCII strings as keys.

4.5 Indexing a trillion keys
We performed a very large-scale test by creating an MPHF for 1012 keys. For this experiment,
we used a machine with 750 GB of RAM. Since storing that many keys would require 8 TB
of disk space, we instead used a procedure that deterministically generates a stream of 1012

pseudo-random integers in [0, 264 − 1]. We considered the streamed values as input keys
without writing them to disk. In addition, key sets of cardinality below 20 billion (2% of the
input) were stored in memory to avoid re-computation from scratch at each subsequent level.
Thus, the reported computation time should not be compared to previously presented results
as this experiment has no disk accesses. The test was performed using γ = 2, 24 threads.

Creating the MPHF took 35.4 hours and required 637 GB RAM. This memory footprint is
roughly separated between the bit arrays (≈ 459 GB) and the memory required for loading
20 billion keys in memory (≈ 178 GB). The final MPHF occupied 3.71 bits per key.

5 Conclusion

We have proposed a resource-efficient and highly scalable algorithm for constructing and
querying MPHFs. Our algorithmic choices were motivated by simplicity: the method only
relies on bit arrays and classical hash functions. While the idea of recording collisions in bit
arrays to create MPHFs is not novel [6, 12], to the best of our knowledge BBhash is the first
implementation that is competitive with the state of the art. The construction is particularly
time-efficient as it is parallelized and mainly consists in hashing keys and performing memory
accesses. Moreover, the additional data structures used during construction are provably
small enough to ensure a low memory overhead during construction. In other words, creating
the MPHF does not require much more space than the resulting MPHF itself. This aspect is
important when constructing MPHFs on large key sets in practice.

Experimental results show that BBhash generates MPHFs that are slightly larger to those
produced by other methods. However BBhash is by far the most efficient in terms of construc-
tion time, query time, memory and disk footprint for indexing large key sets (of cardinality
above 109 keys). The scalability of our approach was confirmed by constructing MPHFs for
sets as large as 1012 keys. To the best of our knowledge, no other MPHF implementation has
been tested on that many keys.

A time/space trade-off is achieved through the γ parameter. The value γ = 1 yields MPHFs
that occupy roughly 3N bits of space and have little memory overhead during construction.
Higher γ values use more space for the construction and the final structure size, but they
achieve faster construction and query times. Our results suggest that γ = 2 is a good
time-versus-space compromise, using 3.7 bits per key. With respect to hypergraph-based
methods [1, 3, 4, 11], BBhash offers significantly better construction performance, but the
resulting MPHF size is up to 1 bit/key larger. We however argue that the MPHF size, as long
as it is limited to a few bits per key, is generally not a bottleneck as many applications use
MPHFs to associate much larger values to keys. Thus, we believe that this work will unlock
many high performance computing applications where the possibility to index billions keys
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and more is a huge step forward.
An interesting direction for future work is to obtain more space-efficient MPHFs using

our method. We believe that a way to achieve this goal is to slightly change the hashing
scheme. We would like to explore an idea inspired by the CHD algorithm for testing several
hash functions at each level and selecting (then storing) one that minimizes the number of
collisions. At the price of longer construction times, we anticipate that this approach could
significantly decrease the final structure size.
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Appendix

Proofs of MPHF size and memory required for construction
MPHF size with γ = 1.∑

d≥0
|Ad| = N

∑
d≥0

(1− e−1)d

= N
1

1− (1− e−1) as lim
d→+∞

(1− e−1)d = 0

= eN

J

MPHF size using any γ ≥ 1. With γ ≥ 1 : |Ad| = γ|Ad−1|(1 − e
−1
γ ) = γ|A0|(1 − e

−1
γ )d =

γN(1− e
−1
γ )d

Thus,
∑
d≥0
|Ad| = γN

∑
d≥0

(1− e
−1
γ )d

Moreover, as limd→+∞(1− e
−1
γ )d = 0 since for γ > 0, 0 < 1− e

−1
γ < 1, on has:∑

d≥0
|Ad| = γN

1
1− (1− e

−1
γ )

= γe
1
γ N

J

Note that this proof stands for any γ value > 0, but that with γ < 1 the theoretical and
practical MPHF sizes increase exponentially as γ get close to zero.

Lemma 1. Let m(d) be memory required during level d and let R be the ratio between the
maximal memory needed during the MPHF construction and the MPHF total size denoted by S.
Formally,

R = maxd≥0(m(d))
S

= maxd≥0(m(d))
γe

1
γ N

First we prove that limd→∞
m(d)
S = 1.

m(d) =
∑
i<d

|Ai|+ 2|Ad| = γN

(
1− (1− e

−1
γ )d

e
−1
γ

+ 2(1− e
−1
γ )d

)

Since for γ > 0, 0 < 1− e
−1
γ < 1, then limd→∞m(d) = γe

1
γ N . Thus limd→∞

m(d)
S = 1.

Before going further, we need to compute m(d+ 1)−m(d):

m(d+ 1)−m(d) =
∑
i<d+1

|Ai|+ 2|Ad+1| −
∑
i<d

|Ai|+ 2|Ad|

= |Ad|+ 2|Ad+1| − 2|Ad| = 2|Ad+1| − |Ad|

= 2γN(1− e
−1
γ )d+1 − γN(1− e

−1
γ )d

= γN(1− e
−1
γ )d(2(1− e

−1
γ )− 1)

= γN(1− e
−1
γ )d(1− 2e

−1
γ )

We now prove R ≤ 1 when γ ≤ 1
log(2) and also, R < 2 when γ > 1

log(2) .
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Case 1: γ ≤ 1
log(2)

We have m(0)
S = 2e−

1
γ ≤ 2e− log(2) = 1.

Moreover, as m(d + 1) − m(d) = γN(1 − e
−1
γ )d(1 − 2e

−1
γ ) and as, with γ ≤ 1

log(2) :
1 − e

−1
γ ≥ 0.5, and 1 − 2e

−1
γ ≥ 0 then m(d + 1) −m(d) ≥ 0, thus, m is an increasing

function.
To sum up, with γ ≤ 1

log(2) , we have 1/ that m(0)
S ≤ 1, 2/ that limd→∞

m(d)
S = 1, and 3/

that m is increasing, then R ≤ 1.
Case 2: γ > 1

log(2) We have m(0)
S = 2e−

1
γ . With γ > 1

log(2) , 1 < m(0)
S < 2. Moreover,

m(d+ 1)−m(d) = γN(1− e
−1
γ )d(1− 2e

−1
γ ) is negative as: 1− e

−1
γ > 0 and 1− 2e

−1
γ < 0

for γ > 1
log(2) . Thus m is a decreasing function with d.

With γ > 1
log(2) , we have 1/ that m(0)

S < 2, /2 that limd→∞
m(d)
S = 1 and /3 that m is

decreasing. Thus R < 2.
J
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Algorithms pseudo-codes

Algorithm 1: MPHF construction.
Data: F0 a set of N keys, integers γ and last
Result: array of bit arrays {A0, A1, . . . , Alast}, hash table H
i=0;
while Fi not empty and i ≤ last do

Ai = ArrayF ill(Fi, γ);
foreach key x of Fi do

h = hash(x) mod (γ ∗N);
if Ai[h] == 0 then

Fi+1.add(x)
i=i+1;

Construct H using remaining elements from Flast+1;
Return {A0, A1, . . . , Alast, H}

In practice Fi with i > 1 are stored on disk (see Section 3.4). The hash table H ensures that elements in
Flast+1 are mapped without collisions to integers in [|F0| − |Flast+1|+ 1, |F0|]

Algorithm 2: ArrayF ill
Data: F array of N keys, integer γ
Result: bit array A
Zero-initialize A and C two bit arrays with γ ∗N elements;
foreach key x of F do

h = hash(x) mod (γ ∗N);
if A[h] == 0 and C[h] == 0 then

A[h] = 1;
if A[h] == 1 and C[h] == 0 then

A[h] = 0;
C[h] = 1;

if A[h] == 0 and C[h] == 1 then
Skip;

Delete C;
Return A;

Note that the case A[h] == 1 and C[h] == 1 never happens.

Algorithm 3: MPHF query
Data: bit arrays {A0, A1, . . . , Alast}, hash table H, key x
Result: integer index of x
i=0;
while i ≤ last do

h = hashi(x) mod Ai.size();
if Ai[h] == 1 then

return
∑
j<i |Aj |+ rank(Ai[h]) ;

i = i+ 1;
return H[x] ;

Note, when x is not an element from the key set of the MPHF, the algorithm may return a wrong integer
index.
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Commands

In this section we describe used commands for each presented result. Time and memory
usages where computed using “/usr/bin/time –verbatim” unix command. The disk usage
was computed thanks to a home made script measuring each 1/10 second the size of the
directory using the “du -sk” unix command, and recording the highest value. The BBhash
library and its Bootest tool are available from https://github.com/rizkg/BBHash.

Commands used for Section 4.1:

for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

Note that 1000000000 is the number of keys tested and 1 is the number of used cores.
Additional tests, with larger key set and 8 threads:

for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

Commands used for Section 4.2:

for keys in 10000000000 100000000000; do
./Bootest ${keys} 8 2 -bench
done

Commands used for Section 4.3:

We remind that our benchmark code, testing EMPHF, EMPHF MEM, CHD, and Sux4J is
available at https://github.com/rchikhi/benchmphf.

BBhash commands:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./Bootest ${keys} 1 2 -bench
done
BBhash command with nodisk (Table 1) was
./Bootest 1000000000 1 2 -bench -nodisk
and
./Bootest 1000000000 8 2 -bench -nodisk
respectively for one and height threads. Other commands from Table 1 were deduced
from previously presented BBhash computations.
Commands EMPHF & EMPHF HEM:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -emphf
done
EMPHF (resp. EMPHF HEM) is tested by using the #define EMPHF_SCAN macro
(resp. #define EMPHF_HEM). In order to assess the disk size footprint, the line
“unlink(tmpl);” from file “emphf/mmap_memory_model.hpp” was commented.
Commands CHD:

https://github.com/rizkg/BBHash
https://github.com/rchikhi/benchmphf
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for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -chd
done
Commands Sux4J:
for each size, the “Sux4J/slow/it/unimi/dsi/sux4j/mph/LargeLongCollection.java” was
modified indicating the used size.
./run-sux4j-mphf.sh

Commands used for Section 4.4:

As explained Section 4.4, the keyString.txt file is composed of n-grams extracted from
the Google Books Ngram dataset2, version 20120701.
./BootestFile keyStrings.txt 10 2

Commands used for Section 4.5:

BBhash command for indexing a trillion keys, with keys generated on the fly.
./Bootest 1000000000000 24 2 -onthefly

2 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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